Class Notes 1-5-2010: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 21: | Line 21: | ||
:<math> \vec{v} \cdot \mathbf{\hat{i}} = v_\mathrm{x} </math> |
:<math> \vec{v} \cdot \mathbf{\hat{i}} = v_\mathrm{x} </math> |
||
:<math> \vec{v} \cdot \mathbf{\hat{a}}_\mathrm{m} = \sum_{i} v_\mathrm{i} \mathbf{\hat{a}}_\mathrm{i} \cdot \mathbf{\hat{a}}_\mathrm{m} = v_\mathrm{m} </math> |
:<math> \vec{v} \cdot \mathbf{\hat{a}}_\mathrm{m} = \sum_{i} v_\mathrm{i} \mathbf{\hat{a}}_\mathrm{i} \cdot \mathbf{\hat{a}}_\mathrm{m} = v_\mathrm{m} </math> |
||
:<math> \delta_\mathrm{i,m} |
:<math> \delta_\mathrm{i,m} \equiv \begin{cases} 1 & \mbox{if } i = m, \\ 0 & \mbox{else} \end{cases}</math> |
||
:<math> x(t) = \sum^\infty_{n=1} \left[ b_n \sin \left( \left( \frac {2\pi n} {T} \right) t \right) \right] </math> |
:<math> x(t) = \sum^\infty_{n=1} \left[ b_n \sin \left( \left( \frac {2\pi n} {T} \right) t \right) \right] </math> |
||
Revision as of 15:09, 17 January 2010
Subjects Covered
1) Linear Systems
2) Functions as Vectors
1) Use vector analogy
External Links
- [Class Notes.].
Authors
Colby Fullerton
Brian Roath