Class Notes 1-5-2010: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
[[Image:January_5_graph_1.jpg|200px|thumb|left|Modeling functions as vectors. Using function approximations, the vector path is described.]] | |||
This article covers the notes given in class on January 5, 2010. | |||
==Subjects Covered== | ==Subjects Covered== | ||
1) Linear Systems | 1) Linear Systems | ||
Line 5: | Line 7: | ||
[[Image:Figure_1.jpg| | [[Image:Figure_1.jpg|200px|thumb|left|Functions graphed in vector form.]] | ||
:<math>v_\mathrm{x} = \vec{v} \cdot \mathbf{\hat{i}}</math> | :<math>v_\mathrm{x} = \vec{v} \cdot \mathbf{\hat{i}}</math> | ||
Line 25: | Line 25: | ||
==Example== | |||
[[Image:January_5_graph_2.jpg|200px|thumb|left|Function waves with varying periods based on the function x(t) = x(t+T)]] | |||
:<math> x(t) = \sum^\infty_{n=1} \left[ b_n \sin \left( \left( \frac {2\pi n} {T} \right) t \right) \right] </math> | |||
1) Use vector analogy | 1) Use vector analogy | ||
:<math> x(t) \cdot \sin \left( \frac {2\pi mt} {T} \right) = \sum^\infty_{n=1} \left[ b_n \sin \left( \left( \frac {2\pi n} {T} \right) t \right) \cdot \sin \left( \frac {2\pi mt} {T} \right) \right] </math> | :<math> x(t) \cdot \sin \left( \frac {2\pi mt} {T} \right) = \sum^\infty_{n=1} \left[ b_n \sin \left( \left( \frac {2\pi n} {T} \right) t \right) \cdot \sin \left( \frac {2\pi mt} {T} \right) \right] </math> |
Revision as of 16:15, 17 January 2010
This article covers the notes given in class on January 5, 2010.
Subjects Covered
1) Linear Systems
2) Functions as Vectors
Example
1) Use vector analogy
External Links
- [Class Notes.].
Authors
Colby Fullerton
Brian Roath