Class Notes 1-5-2010: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
Line 14: Line 14:


:<math>v_\mathrm{x} = \vec{v} \cdot \mathbf{\hat{i}}</math>
:<math>v_\mathrm{x} = \vec{v} \cdot \mathbf{\hat{i}}</math>
:<math> \mathbf{\hat{v}} = v_\mathrm{x} \mathbf{\hat{i}} + v_\mathrm{y} \mathbf{\hat{j}} </math>
:<math> \vec{v} = v_\mathrm{x} \mathbf{\hat{i}} + v_\mathrm{y} \mathbf{\hat{j}} </math>
:<math> \mathbf{\hat{v}} = \sum_{i} v_\mathrm{i} \mathbf{\hat{a}}_\mathrm{i} </math>
:<math> \vec{v} = \sum_{i} v_\mathrm{i} \mathbf{\hat{a}}_\mathrm{i} </math>
:<math> \langle v_x, v_y\rangle</math>
:<math> \langle v_x, v_y\rangle</math>
:<math> \mathbf{\hat{u}} \cdot \mathbf{\hat{v}} = |\mathbf{\hat{u}}| |\mathbf{\hat{v}}| \cos\theta </math>
:<math> \mathbf{\hat{u}} \cdot \mathbf{\hat{v}} = |\mathbf{\hat{u}}| |\mathbf{\hat{v}}| \cos\theta </math>
Line 22: Line 22:
:<math> \vec{v} \cdot \mathbf{\hat{a}}_\mathrm{m} = \sum_{i} v_\mathrm{i} \mathbf{\hat{a}}_\mathrm{i} \cdot \mathbf{\hat{a}}_\mathrm{m} = v_\mathrm{m} </math>
:<math> \vec{v} \cdot \mathbf{\hat{a}}_\mathrm{m} = \sum_{i} v_\mathrm{i} \mathbf{\hat{a}}_\mathrm{i} \cdot \mathbf{\hat{a}}_\mathrm{m} = v_\mathrm{m} </math>
:<math> \delta_\mathrm{i,m} \equiv \begin{cases} 1 & \mbox{if } i = m, \\ 0 & \mbox{else} \end{cases}</math>
:<math> \delta_\mathrm{i,m} \equiv \begin{cases} 1 & \mbox{if } i = m, \\ 0 & \mbox{else} \end{cases}</math>
==Example==
==Example==
[[Image:January_5_graph_2.jpg|200px|thumb|left|Function waves with varying periods based on the function x(t) = x(t+T)]]
[[Image:January_5_graph_2.jpg|200px|thumb|left|Function waves with varying periods based on the function x(t) = x(t+T)]]

Revision as of 16:21, 17 January 2010

Error creating thumbnail: File missing
Modeling functions as vectors. Using function approximations, the vector path is described.

This article covers the notes given in class on January 5, 2010.

Subjects Covered

1) Linear Systems

2) Functions as Vectors


Error creating thumbnail: File missing
Functions graphed in vector form.



vx=vi^
v=vxi^+vyj^
v=ivia^i
vx,vy
u^v^=|u^||v^|cosθ
vi^=vx(i^i^)+vyj^i^
vi^=vx
va^m=ivia^ia^m=vm
δi,m{1if i=m,0else

Example

Error creating thumbnail: File missing
Function waves with varying periods based on the function x(t) = x(t+T)

Given function: x(t)=x(t+T)

x(t)=n=1[bnsin((2πnT)t)]

1) Use vector analogy

x(t)sin(2πmtT)=n=1[bnsin((2πnT)t)sin(2πmtT)]
T2T2x(t)sin(2πmtT)dt=vm

External Links

Authors

Colby Fullerton

Brian Roath