Fourier Example: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
New page: Find the Fourier Series of the function: <br /> <center><math>\f(x)=begin{cases} 0,-pi<x<0 \end{cases} \ \ \ \ n=0,1,2,3\dots</math></center> <br /> :<math>\rho_X(x) = \begin{cases}...
 
No edit summary
Line 1: Line 1:
Find the Fourier Series of the function:
Find the Fourier Series of the function:


<br />
:<math>f(x) = \begin{cases}0,& -\pi<x<0\\
\pi,& 0<x<\pi\\
\end{cases}</math>


<center><math>\f(x)=begin{cases}  
:<math>b_n = \frac{1}{2}{\pi}\int_{0}^\pi  \pi\sin(nx)\, dx, = \frac{1}{n}(1-cos(x\pi))=\frac{1}{n}(1-(-1)^n)</math>
 
0,-pi<x<0
 
\end{cases} \ \ \ \ n=0,1,2,3\dots</math></center>
 
<br />
 
:<math>\rho_X(x) = \begin{cases}\frac{1}{2},& \x=0,\\
\frac{1}{2},& \x=1,\\
0,& \text{otherwise} .\end{cases}</math>
<!--  -->

Revision as of 00:28, 19 January 2010

Find the Fourier Series of the function:

f(x)={0,π<x<0π,0<x<π
bn=12π0ππsin(nx)dx,=1n(1cos(xπ))=1n(1(1)n)