Fourier Example: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
Find the Fourier Series of the function:
Find the Fourier Series of the function:



:<math>f(x) = \begin{cases}0,& -\pi<x<0\\
:<math>f(x) = \begin{cases}0,& -\pi<x<0\\
Line 5: Line 6:
\end{cases}</math>
\end{cases}</math>


:<math>b_n = \frac{1}{2}{\pi}\int_{0}^\pi \pi\sin(nx)\, dx, = \frac{1}{n}(1-cos(x\pi))=\frac{1}{n}(1-(-1)^n)</math>
:<math>b_n = \frac{1}{2\pi}\int_{0}^\pi \pi\sin(nx)\, dx, = \frac{1}{n}(1-cos(x\pi))=\frac{1}{n}(1-(-1)^n)</math>



We obtain b_2n = 0 and


<math>b_{2n+1}=\frac{2}{2n+1}</math>

Therefore, the Fourier series of f(x) is

<math>f(x)=\frac{\pi}{2}+2(sin(x)+\frac{sin(3x)}{3}+\frac{sin(5x)}{5}+...)</math>

Revision as of 23:41, 18 January 2010

Find the Fourier Series of the function:



We obtain b_2n = 0 and


Therefore, the Fourier series of f(x) is