Fourier Example: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 2: Line 2:




:<math>f(x) = \begin{cases}0,& -\pi<x<0\\
:<math>f(x) = \begin{cases}0,& -\pi\le x<0\\
\pi,& 0<x<\pi\\
\pi,& 0 \le x \le \pi\\
\end{cases}</math>
\end{cases}</math>


:<math>b_n = \frac{1}{2\pi}\int_{0}^\pi  \pi\sin(nx)\, dx, = \frac{1}{n}(1-cos(x\pi))=\frac{1}{n}(1-(-1)^n)</math>
'''
== Solution ==
'''
 
Here we have
 
:<math>b_n = \int_{0}^\pi  \pi\sin(nx)\, dx = \frac{1}{n}(1-cos(x\pi))=\frac{1}{n}(1-(-1)^n)</math>




Line 18: Line 24:


<math>f(x)=\frac{\pi}{2}+2(sin(x)+\frac{sin(3x)}{3}+\frac{sin(5x)}{5}+...)</math>
<math>f(x)=\frac{\pi}{2}+2(sin(x)+\frac{sin(3x)}{3}+\frac{sin(5x)}{5}+...)</math>
==References:==
[[Fourier Series: Basic Results]]

Revision as of 00:55, 19 January 2010

Find the Fourier Series of the function:


f(x)={0,πx<0π,0xπ

Solution

Here we have

bn=0ππsin(nx)dx=1n(1cos(xπ))=1n(1(1)n)


We obtain b_2n = 0 and


b2n+1=22n+1

Therefore, the Fourier series of f(x) is

f(x)=π2+2(sin(x)+sin(3x)3+sin(5x)5+...)

References:

Fourier Series: Basic Results