Fourier Example: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 5: Line 5:
\pi,& 0 \le x \le \pi\\
\pi,& 0 \le x \le \pi\\
\end{cases}</math>
\end{cases}</math>


'''
'''
Line 12: Line 14:


Here we have  
Here we have  
<math>a_0=\frac{1}{2\pi}(\int_{-\pi}^00\ dx+\int_{0}^\pi\pi\ dx)=\frac{\pi}{2}</math>
<math>a_n=\int_{0}^\pi\pi cos(nx)\ dx=0,  n\ge1,</math>
and


:<math>b_n = \int_{0}^\pi  \pi\sin(nx)\, dx = \frac{1}{n}(1-cos(x\pi))=\frac{1}{n}(1-(-1)^n)</math>
:<math>b_n = \int_{0}^\pi  \pi\sin(nx)\, dx = \frac{1}{n}(1-cos(x\pi))=\frac{1}{n}(1-(-1)^n)</math>




We obtain  <math>b_{2n}</math> = 0 and


We obtain  b_2n = 0 and


<math>b_{2n+1}=\frac{2}{2n+1}</math>


<math>b_{2n+1}=\frac{2}{2n+1}</math>


Therefore, the Fourier series of f(x) is  
Therefore, the Fourier series of f(x) is  

Revision as of 01:28, 19 January 2010

Find the Fourier Series of the function:


f(x)={0,πx<0π,0xπ


Solution


Here we have



a0=12π(π00dx+0ππdx)=π2


an=0ππcos(nx)dx=0,n1,


and


bn=0ππsin(nx)dx=1n(1cos(xπ))=1n(1(1)n)


We obtain b2n = 0 and


b2n+1=22n+1


Therefore, the Fourier series of f(x) is

f(x)=π2+2(sin(x)+sin(3x)3+sin(5x)5+...)

References:

Fourier Series: Basic Results