Laplace Transform of a Triangle Wave: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 28: Line 28:
<math>\int_{.5}^{1.5}{-4te^{-st}}=\frac{6se^{-1.5s}+4e^{-1.5s}-2se^{-.5s}-4e^{-.5s}}{s^{2}}</math>
<math>\int_{.5}^{1.5}{-4te^{-st}}=\frac{6se^{-1.5s}+4e^{-1.5s}-2se^{-.5s}-4e^{-.5s}}{s^{2}}</math>


<math>\int_{}^{}{4.5e^{-st}}=\; L\left\{ 4.5 \right\}=\frac{4.5}{s}</math>
<math>\int_{.5}^{1.5}{4.5e^{-st}}=\frac{4.5se^{-.5s}-se^{-1.5s}}{s^{2}}</math>
==Author==
==Author==



Revision as of 12:04, 25 January 2010

Triangle wave with period T=2 and amplitude A=2

This page is still in progress

Introduction

This article explains how to transform a periodic function (in this case a triangle wave). This is especially useful for analyzing circuits which contain triangle wave voltage sources.

Define F(t)

So,

DefinitionofF.jpg



Using the theorem for the transform of a periodic function,

Author

Reviewers

Readers