The Class Notes: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
Kirkbetz (talk | contribs)
Kirkbetz (talk | contribs)
No edit summary
Line 22: Line 22:
<math> \vec F\ = q \vec v \times \vec B </math>
<math> \vec F\ = q \vec v \times \vec B </math>


<math>d \vec F\ = I d \vec \times \vec B </math>
<math>d \vec F\ = I d \vec\ell \times \vec B </math>


<math>\mathcal{F} = Hl_1 + Hl_2</math>
<math>\mathcal{F} = H\ell_1 + H\ell_2</math>


<math>V\ = R_1I + R_2I</math>
<math>V\ = R_1I + R_2I</math>
Line 34: Line 34:
==Magnetic Equations==
==Magnetic Equations==


<math>\int \vec Hd \vec l = \mathcal{F}</math>
<math>\int \vec Hd \vec\ell= \mathcal{F}</math>


<math>\oint \vec Hd \vec l = Ni = \sum_{n}Hl + Ni = 0 </math>
<math>\oint \vec Hd \vec\ell= Ni = \sum_{n}H\ell+ Ni = 0 </math>


<math>\oint \vec Bd \vec s =  0 </math>
<math>\oint \vec Bd \vec s =  0 </math>
Line 46: Line 46:
<math> \vec B = \mu \vec H\ Assumes\ Linearity </math>
<math> \vec B = \mu \vec H\ Assumes\ Linearity </math>


<math> \mathcal{R} \frac{l}{\mu A}</math>
<math> \mathcal{R} \frac{\ell}{\mu A}</math>


[[Image:BHField.JPG‎]]
[[Image:BHField.JPG‎]]
Line 64: Line 64:
Picture drawn by Kirk Betz based on drawing by Dr. Frohnes, lecture Jan. 8, 2010  
Picture drawn by Kirk Betz based on drawing by Dr. Frohnes, lecture Jan. 8, 2010  


<math> \oint \vec Hd \vec l = Ni </math>
<math> \oint \vec Hd \vec\ell= Ni </math>


Case i)  
Case i)  
Line 74: Line 74:
Graph and picture 6
Graph and picture 6


<math> Hl\ = NI </math>, <math>\ I\ \varpropto H</math>
<math> H\ell\ = NI </math>, <math>\ I\ \varpropto H</math>


<math> NI\ = \mathcal{F} \backsim V</math>
<math> NI\ = \mathcal{F} \backsim V</math>


<math> \mathcal{R} = \frac{l}{\mu A} \backsim R = \frac{l}{\sigma A} </math>
<math> \mathcal{R} = \frac{\ell}{\mu A} \backsim R = \frac{l}{\sigma A} </math>


<math> \phi\ = BA \backsim I = JA</math>
<math> \phi\ = BA \backsim I = JA</math>


<math> R_c= \frac{l_1}{\mu A} </math>
<math> R_c= \frac{\ell_1}{\mu A} </math>


<math>  R_g= \frac{g}{\mu_0 (\sqrt{A} + g)^2}</math>
<math>  R_g= \frac{g}{\mu_0 (\sqrt{A} + g)^2}</math>

Revision as of 16:35, 25 January 2010

4 jan 2010

LimitA:

X0=1βXsV0=R1+R2R1Vin

Xi=0

Picture drawn by Kirk Betz based on drawing by Dr. Frohnes, lecture Jan. 4, 2010

Vin=V0(R1R1+R2).


V0=1(R1R1+R2)Vin

Magnetic Circuits

jan 6 2010

F=qv×B

dF=Id×B

=H1+H2

V=R1I+R2I

Picture drawn by Kirk Betz based on drawing by Dr. Frohnes, lecture Jan. 6, 2010

Magnetic Equations

Hd=

Hd=Ni=nH+Ni=0

Bds=0

Bds=ϕBAreaMagneticFlux

Reluctanceϕ=Niϕ

B=μHAssumesLinearity

μA

Picture drawn by Kirk Betz based on drawing by Dr. Frohnes, lecture Jan. 6, 2010

Pictures drawn by Kirk Betz based on drawing by Dr. Frohnes, lecture Jan. 6, 2010

Magnetic Circuits Examples

What about chancing currents, etc.?

Picture drawn by Kirk Betz based on drawing by Dr. Frohnes, lecture Jan. 8, 2010

Hd=Ni

Case i)

μ=104μ0inthecore Something about this part doesn't seem right.

FindBinthegap.

Graph and picture 6

H=NI, IH

NI=V

=μAR=lσA

ϕ=BAI=JA

Rc=1μA

Rg=gμ0(A+g)2