Table of Fourier Transform Properties: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 5: | Line 5: | ||
| Convolution ([[Ben Henry]]) || If <math>h(x)=\left(f*g\right)(x)</math>, becomes   <math> \hat{h}(\xi)=\hat{f}(\xi)\cdot \hat{g}(\xi).</math> |
| Convolution ([[Ben Henry]]) || If <math>h(x)=\left(f*g\right)(x)</math>, becomes   <math> \hat{h}(\xi)=\hat{f}(\xi)\cdot \hat{g}(\xi).</math> |
||
|- |
|- |
||
| Scaling ([[Christopher Garrison Lau I|Chris Lau]]) || Given ''a'', which is non-zero and real, and <math>\ h(x)=f(ax) </math>, then <math>\hat{h}(\xi)=\frac{1}{|a|}\hat{f}\left(\frac{\xi}{a}\right)</math>. If ''a''=−1, then the time-reversal property states: if <math>\ h(x)= |
| Scaling ([[Christopher Garrison Lau I|Chris Lau]]) || Given ''a'', which is non-zero and real, and <math>\ h(x)=f(ax) </math>, then <math>\hat{h}(\xi)=\frac{1}{|a|}\hat{f}\left(\frac{\xi}{a}\right)</math>. If ''a''=−1, then the time-reversal property states: if <math>\ h(x)=f(-x)</math>, then <math>\hat{h}(\xi)=\hat{f}(-\xi)</math>. |
||
|} |
|} |