Kurt's Assignment: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
=Common Synthesizer Waveforms=
=Common Synthesizer Waveforms=
<math>\begin{align}
x(t) &= x(t+T) = a_0 + \sum_{n=1}^\infty a_n \cos(n\omega_0t) + b_n \sin(n\omega_0t)\\
a_0 &= \frac{1}{T}\int_0^T f(t) dt\\
a_n &= \frac{2}{T}\int_0^T f(t)\cos(n\omega_0t) dt\\
b_n &= \frac{2}{T}\int_0^T f(t)\sin(n\omega_0t) dt\\
\end{align}
</math>


==Square Wave==
==Square Wave==



<math>x(t) = x(t+T) = a_0 + \sum_{n=1}^\infty a_n \cos(n\omega_0t) + b_n \sin(n\omega_0t)</math>


<math>\begin{align}
<math>\begin{align}
a_0 &= \frac{1}{T}\int_0^T f(t) dt\\
a_0 &= \frac{1}{T}\int_0^{\frac{1}{2}T} H dt + \frac{1}{T}\int_{\frac{1}{2}T}^T -H dt\\
&=\frac{1}{T}\int_0^{\frac{1}{2}T}H dt + \frac{1}{T}\int_{\frac{1}{2}T}^T 0 dt \\
&=\frac{1}{T}\left[Ht\right]\bigg|_{t=0}^{\frac{1}{2}T} - \frac{1}{T}\left[Ht\right]\bigg|_{t={\frac{1}{2}T}}^T\\
&=\frac{1}{T}[Ht]
&=\frac{1}{T}H\frac{1}{2}T-0 - \left[\frac{1}{T}HT - \frac{1}{T}H\frac{1}{2}T\right]\\
&=\frac{H}{2} - \left[H-\frac{1}{2}H\right]\\
&=\frac{H}{2}-\frac{H}{2}\\
&=0
\end{align}</math>
\end{align}</math>



Revision as of 13:32, 1 November 2010

Common Synthesizer Waveforms

Square Wave

TODO: finish