Fourier Series
If
- Dirichlet conditions are satisfied
then we can write
The above equation is called the complex fourier series. Given , we may determine by taking the inner product of with .
Let us assume a solution for of the form . Now we take the inner product of with .
If then,
If then,
We can simplify the above two conclusion into one equation.
So, we may conclude
Orthogonal Functions
The function and are orthogonal on if and only if .
The set of functions are orthonormal if and only if .
Linear Systems
Let us say we have a Linear time Invarient System, where is the input and is the output. What outputs do we get as we put different inputs into this system?
File:System.jpg
abc
|
def
|
ghi
|
jkl
|
mno
|
pqr
|
stu
|
vwx
|
yz
|
INPUT OUTPUT REASON
Given
Fourier Series (indepth)
I would like to take a closer look at in the Fourier Series. Hopefully this will provide a better understanding of .
We will seperate x(t) into three parts; where is negative, zero, and positive.
Now, by substituting into the summation where is negative and substituting into the summation where is positive we get:
Recall that
If is real, then . Let us assume that is real.
Recall that Here is further clarification on this property
So, we may write:
Fourier Transform
Fourier transforms emerge because we want to be able to make Fourier expressions of non-periodic functions. We can take the limit of those non-periodic functions to get a fourier expression for the function.
Remember that:
So,
From the above limit we define and .
We can take the derivitive of and then put in terms of the reverse fourier transform.
What happens if we just shift the time of ?
In the same way, if we shift the frequency we get:
What would be the Fourier transform of ?
<