Max Woesner Find ℱ[cos(w0t)g(t)] Recall w0=2πf0, so ℱ[cos(w0t)g(t)]=ℱ[cos(2πf0t)g(t)]=∫−∞∞cos(2πf0t)g(t)e−j2πftdt Also recall cos(θ)=12(ejθ+e−jθ),so ∫−∞∞cos(2πf0t)g(t)e−j2πftdt=∫−∞∞12[ej2πf0t+e−j2πf0t]g(t)e−j2πftdt Now ∫−∞∞12[ej2πf0t+e−j2πf0t]g(t)e−j2πftdt=12∫−∞∞e−j2π(f−f0)tg(t)dt+12∫−∞∞e−j2π(f+f0)tg(t)dt=12G(f−f0)+12G(f+f0) So ℱ[cos(w0t)g(t)]=12[G(f−f0)+G(f+f0)]
Nick Christman