Homework Eight

From Class Wiki
Revision as of 19:17, 8 November 2009 by Nicholas.Christman (talk | contribs)
Jump to navigation Jump to search

How does a CD player work with no oversampling, but digital filtering (1x oversampling)?


Nick Christman


Recall that when the audio for a music CD is produced it has an infinite amount of data points which can be expressed as in the time domain [Figure 1] and in the frequency domain [Figure 2].

Figure 1: Audio data as a function of time, x(t)
Figure 2: Audio data as a function of frequency, X(f)

When one wants to store the data of (i.e. reading the data onto a CD in this case) an infinite number of data points is not ideal -- in fact, it is impossible. Therefore, we must sample the data at the (typical) rate of . This will give us a periodic function which we will call is the sampling period. It is common to allow a sampling rate of twice the frequency at which a human can hear (i.e. 2 x 22 kHz) -- that means, kHz.

Recall from class that in order to sample the original function, , we need to use a delta function. In other words, the continuous function of can be written as [Figure 3]. As one may expect, in the frequency domain we should get the same plot as in Figure 2, but it should repeat. In the frequency domain, this can be expressed as [Figure 4].

Figure 3: x(nT) written as impulses for sampling purposes
Figure 4: x(nT) written as impulses for sampling purposes in the frequency domain

As one may suspect, in order to get a more accurate function you must take more data points -- in other words, a higher sampling rate (i.e. 2x, 8x, etc. oversampling) leads to a more accurate collection of data. For this case, we are asked to looked a digital sampling, or 1x oversampling. In order to accomplish this, we will convolve our function from above with a Finite Impulse Response filter (FIR filter). Let's call it g(t and define it as where is the oversampling rate. In our case . Because we are dealing with digital sampling, the convolution will result in the original function [Figure 5].

Figure 5: x(nT) after the convolution mentioned above