Write up on the Wiki a solution of a coupled oscillator problem like the coupled pendulum. Use State Space methods. Describe the eigenmodes of the system.
Initial Conditions:
Equations for M_1
Equations for M_2
Additional Equations
State Equations
[ x 1 ˙ x 1 ¨ x 2 ˙ x 2 ¨ ] {\displaystyle {\begin{bmatrix}{\dot {x_{1}}}\\{\ddot {x_{1}}}\\{\dot {x_{2}}}\\{\ddot {x_{2}}}\end{bmatrix}}\,} = [ 0 1 0 0 ( k 1 − k 2 ) m 1 0 − k 1 m 1 0 0 0 0 1 k 1 m 2 0 ( k 1 + k 2 ) m 2 0 ] [ x 1 x ˙ 1 x 2 x ˙ 2 ] + [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ] [ 0 0 0 0 ] {\displaystyle {\begin{bmatrix}0&1&0&0\\{\frac {(k_{1}-k_{2})}{m_{1}}}&0&{\frac {-k_{1}}{m_{1}}}&0\\0&0&0&1\\{\frac {k_{1}}{m_{2}}}&0&{\frac {(k_{1}+k_{2})}{m_{2}}}&0\end{bmatrix}}{\begin{bmatrix}x_{1}\\{\dot {x}}_{1}\\x_{2}\\{\dot {x}}_{2}\end{bmatrix}}+{\begin{bmatrix}0&0&0&0\\0&0&0&0\\0&0&0&0\\0&0&0&0\end{bmatrix}}{\begin{bmatrix}0\\0\\0\\0\end{bmatrix}}}
With the numbers...
[ x 1 ˙ x 1 ¨ x 2 ˙ x 2 ¨ ] {\displaystyle {\begin{bmatrix}{\dot {x_{1}}}\\{\ddot {x_{1}}}\\{\dot {x_{2}}}\\{\ddot {x_{2}}}\end{bmatrix}}\,} = [ 0 1 0 0 ( − 50 N / m ) 15 k g 0 − 100 N / m 15 k g 0 0 0 0 1 100 N / m 15 k g 0 ( 250 N / m ) 15 k g 0 ] [ x 1 x ˙ 1 x 2 x ˙ 2 ] {\displaystyle {\begin{bmatrix}0&1&0&0\\{\frac {(-50N/m)}{15kg}}&0&{\frac {-100N/m}{15kg}}&0\\0&0&0&1\\{\frac {100N/m}{15kg}}&0&{\frac {(250N/m)}{15kg}}&0\end{bmatrix}}{\begin{bmatrix}x_{1}\\{\dot {x}}_{1}\\x_{2}\\{\dot {x}}_{2}\end{bmatrix}}}