I decided that I would attempt to perform a simple analysis of a series RL circuit, which could then be used to do a more complex analysis on a basic transformer. I have always had interest in electronics, and transformers are key to basic electronics.
I decided that i would do the analysis of a RL circuit with the variables instead of given values.
Given:
V(t)=
V(s)=
I(0)=i
The Laplace transform for an inductor:
=
The Laplace transform for a resistor:
=
Therefore the Resulting Equation for the system after applying the Laplace Transform:
A series of algebraic manipulations follows to come up with I(s):
We can then use partial fraction manipulation to expand the expression:
Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \dfrac{s/L}{(s^2+w^2)(R/L+s)} = \dfra{A(s+jw)(s+R/L)}{(s+R/L)(s^2+w^2)} + \dfrac{A*(s+jw)(s+R/L)}{(s^2+w^2)(s+R/L)} + dfrac{B(s^2+w^2)}{(s+R/L)(s^2+w^2)} \,\!}