Discrete Fourier Transforms
Jump to navigation
Jump to search
Paul's DFT Page
One of the major tools used in signal processing is the DFT, which stands for Discrete Fourier Transform. The reason we need to to a DFT instead of a Fourier Transform is that our computers are limited in their abilites. They use sampling, and they have limited memory, so we have to adapt to the computers.
What is a DFT?
A DFT is like doing a Fourier Transform, but instead of doing it with an integral, we do it with discrete values and a sum. A Fourier Transform looks like this:
Which uses an integral, while the DFT which looks like this:
Which is using a sum and a noncontinous series of delta functions x(n) instead of the continuous function x(t).