Fourier Transform Properties

From Class Wiki
Revision as of 15:30, 19 October 2009 by Frohro (talk | contribs)
Jump to navigation Jump to search

Some properties to choose from if you are having difficulty....

Max Woesner

Find [cos(w0t)g(t)]
Recall w0=2πf0, so [cos(w0t)g(t)]=[cos(2πf0t)g(t)]=cos(2πf0t)g(t)ej2πftdt
Also recall cos(θ)=12(ejθ+ejθ),so cos(2πf0t)g(t)ej2πftdt=12[ej2πf0t+ej2πf0t]g(t)ej2πftdt
Now 12[ej2πf0t+ej2πf0t]g(t)ej2πftdt=12ej2π(ff0)tg(t)dt+12ej2π(f+f0)tg(t)dt=12G(ff0)+12G(f+f0)
So [cos(w0t)g(t)]=12[G(ff0)+G(f+f0)]


Nick Christman

Find [10tg(t)ej2πft0]

To begin, we know that

[10tg(t)ej2πft0]=10tg(t)ej2πft0ej2πftdt=10tg(t)ej2πf(t0t)dt

But recall that ej2πf(t0t)δ(t0t) or δ(tt0)


Because of this definition, our problem has now been simplified significantly:

[10tg(t)ej2πft0]=10tg(t)δ(tt0)dt=10t0g(t0)

Therefore,

[10tg(t)ej2πft0]=10t0g(t0)



Joshua Sarris

Find [sin(w0t)g(t)]


Recall w0=2πf0,

so expanding we have,

[sin(w0t)g(t)]=[sin(2πf0t)g(t)]=cos(2πf0t)g(t)ej2πftdt

Also recall sin(θ)=1j2(ejθ+ejθ),

so we can convert to exponentials.

sin(2πf0t)g(t)ej2πftdt=1j2[ej2πf0t+ej2πf0t]g(t)ej2πftdt

Now integrating gives us,

1j2[ej2πf0t+ej2πf0t]g(t)ej2πftdt=1j2ej2π(ff0)tg(t)dt+12ej2π(f+f0)tg(t)dt=1j2G(ff0)+1j2G(f+f0)


So we now have the identity,

[cos(w0t)g(t)]=1j2[G(ff0)+G(f+f0)]

orr rather

[cos(w0t)g(t)]=12j[G(ff0)G(f+f0)]

To be reviewed by Max.