Back to my Home Page
Evaluate the integral ∫−T2T2ej2π(n−m)t/Tdt For n=m,∫−T2T2ej2π(n−m)t/Tdt=∫−T2T21dt=T|−T2T2=T2−−T2=T For n≠m,∫−T2T2ej2π(n−m)t/Tdt=ej2π(n−m)t/Tj2π(n−m)T|−T2T2=ejπ(n−m)−e−jπ(n−m)j2π(n−m)T=0 So, ∫−T2T2ej2π(n−m)t/Tdt={T,for n=m0,for n≠m Alternate method: ∫−T2T2ej2π(n−m)t/Tdt=∫−T2T2[cos(2π(n−m)t/T)+jsin(2π(n−m)t/T)]dt For n=m,∫−T2T2[cos(2π(n−m)t/T)+jsin(2π(n−m)t/T)]dt=∫−T2T21dt=T|−T2T2=T2−−T2=T For n≠m,∫−T2T2[cos(2π(n−m)t/T)+jsin(2π(n−m)t/T)]dt=0 So, ∫−T2T2ej2π(n−m)t/Tdt={T,for n=m0,for n≠m