One of Maxwell's Equations: ∮ ∂ S E ⋅ l = − ∂ Φ B , S ∂ t {\displaystyle \oint _{\partial S}{\textbf {E}}\cdot {\textbf {l}}=-{\frac {\partial \Phi _{B,S}}{\partial t}}}
Matrix: [ 1 0 0 0 1 0 0 0 ∂ ∂ t ] {\displaystyle {\begin{bmatrix}1&0&0\\0&1&0\\0&0&{\frac {\partial }{\partial t}}\end{bmatrix}}}
Cylindrical Coordinates:
ρ ^ = cos ϕ x ^ + sin ϕ y ^ {\displaystyle {\hat {\rho }}=\cos \phi \ {\hat {x}}+\sin \phi \ {\hat {y}}}
ϕ ^ = − sin ϕ x ^ + cos ϕ y ^ {\displaystyle {\hat {\phi }}=-\sin \phi \ {\hat {x}}+\cos \phi \ {\hat {y}}}
z ^ = z ^ {\displaystyle {\hat {z}}={\hat {z}}}