Find the Fourier Series of the function:
Here we have
a 0 = 1 2 π ( ∫ − π 0 0 d x + ∫ 0 π π d x ) = π 2 {\displaystyle a_{0}={\frac {1}{2\pi }}(\int _{-\pi }^{0}0\ dx+\int _{0}^{\pi }\pi \ dx)={\frac {\pi }{2}}}
a n = ∫ 0 π π c o s ( n x ) d x = 0 , n ≥ 1 , {\displaystyle a_{n}=\int _{0}^{\pi }\pi cos(nx)\ dx=0,n\geq 1,}
and
We obtain b 2 n {\displaystyle b_{2n}} = 0 and
b 2 n + 1 = 2 2 n + 1 {\displaystyle b_{2n+1}={\frac {2}{2n+1}}}
Therefore, the Fourier series of f(x) is
f ( x ) = π 2 + 2 ( s i n ( x ) + s i n ( 3 x ) 3 + s i n ( 5 x ) 5 + . . . ) {\displaystyle f(x)={\frac {\pi }{2}}+2(sin(x)+{\frac {sin(3x)}{3}}+{\frac {sin(5x)}{5}}+...)}
Fourier Series: Basic Results