Digital Control Octave Scripts
Jump to navigation
Jump to search
System Identification Simulation
% Digital Control System Identification Example pkg load control clear all; close all; % Set up the system to fit to. A=diag([-1,-2]) % Make sure the system is stable. B=[1,1]' C=[1,2] %A=diag(-1) %B=1 %C=1 sys = ss(A,B,C); % sys is the system to fit. % Move to the sampled domain. T=0.01; % T is the sampling interval. N=10000; % N is the number of training points. t=0:T:N*T; sys_discrete = c2d(sys,T); sys_discrete_tf = tf(sys_discrete) if(!isstable(sys)) error('System is not stable!\n') % Check for stability. end if(!isctrb(sys)) % Check to make sure the system is contrololable, error('System is not controllable!\n') end if(!isobsv(sys)) % and observable. If it is not you need to fix it! error('System is not observable!\n') end % Now set up the system identification. u=randn(size(t)); [y,t]=lsim(sys,u,t); % The order of the 0fitted system is n. n=2 Y=[[y(n+1:N+1)]]; % Note: Octave's lowest index is 1, not 0. for k=n:N PSI(k-n+1,:)=[y(k:-1:k-n+1)', u(k:-1:k-n+1)]; end PSI; THETA=(PSI'*PSI)^(-1)*PSI'*Y sys_fit=tf(THETA(n+1:2*n),[1,-THETA(1:n)'],T) % tf(num,den,T) [y_fit,t]=lsim(sys_fit,u,t); err=(y-y_fit); plot(t,err) figure; plot(t,y,t,y_fit) sum_err = (y-y_fit)'*(y-y_fit)
Kalman Filter RC Circuit Example
This is for a series RC circuit. It shows how to do it yourself using equations we derived in class and using dlqe().
% This is a demo of the Kalman filter on an RC circuit. % Rob Frohne, for ENGR 454, Digital Control Systems. % We will use v_dot = A *v + B*u, where A=-1/RC. The input is set to % u(t) = (1 + sign(t))/2. clear all; pkg load control; R = 3300; C = 1000e-6; A = -1/(R*C); B = 1000;%/(R*C); C_cont = 1; cont_sys = ss(A,B,C_cont); T = 0.1; % sampling interval N=200; disc_sys = c2d(cont_sys,T); Phi = disc_sys.a; Gamma = disc_sys.b; %C = disc_sys.c; t=(0:T:N*T)'; u = 1*(sign(t)); [y,t,x] = lsim(disc_sys,u) ; % The original discretized system without any noise. w = .01*randn(size(t)); % random state noise v = sqrt(.01)*randn(size(t)); % random measurement noise % Note: to add w to x and retain u, u = u + 1/Gamma*w [yn,t,xn] = lsim(disc_sys,u+1/Gamma*w); %noisy due to state errors. yn = yn + v; % noisy due to measurement errors. Q = cov(w,w') R = cov(v,v') % First: show how to use the built in kalman function to get steady state results. % *Block Diagram* % u +-------+ ^ % +---------------------------->| |-------> y % | +-------+ + y | est | ^ % u ----+--->| |----->(+)------>| |-------> x % | sys | ^ + +-------+ % w -------->| | | % +-------+ | v % % Q = cov (w, w') R = cov (v, v') S = cov (w, v') [m,p,z,e] = dlqe(Phi,[],disc_sys.c,Q,R) % Now simulate the Kalman filter step by step. x_hat(1) = 0; % initial x x_tilde(1) = x_hat(1); % for graphing purposes. p_hat(1) = 0; % initial p_hat p_tilde(1) = p_hat(1); for j = 2:length(t) p_tilde(j) = Phi*p_hat(j-1)*Phi' + Q; x_tilde(j) = Phi*x_hat(j-1) + Gamma*u(j-1); Kj(j) =p_tilde(j)*disc_sys.c'/(disc_sys.c*p_tilde(j)*disc_sys.c'+R); % p_hat(j)= (1-Kj(j)*disc_sys.c)*p_tilde(j); % Numerically unstable p_hat(j)=(1-Kj(j))*p_tilde(j)*(1-Kj(j))' + Kj(j)*R*Kj(j)'; % Numerically stable x_hat(j) = x_tilde(j) + Kj(j)*(yn(j) - disc_sys.c*x_tilde(j)); endfor disp("Our Kj ended at: "),disp(Kj(end)) disp("The dlqe estimate of K is: "),disp(m) figure(1) plot(p_hat) title('Estimate of the Variance') figure(2) plot(t,x,t,x_tilde,t,yn) title('RC Circuit Response') legend('No Noise','Kalman Estimate','Noisy Measurement') figure(3) plot(Kj) title('Kj');