Fourier series - by Ray Betz

From Class Wiki
Jump to navigation Jump to search

Fourier Series

If

  1. x(t)=x(t+T)
  2. Dirichlet conditions satisfied

then we can write

x(t)=k=αkej2πktT

The above equation is called the complex fourier series. Given x(t), we may determine αk by taking the inner product of αk with x(t). Let us assume a solution for αk of the form ej2πntT. Now we take the inner product of αk with x(t). <αk|x(t)>=<ej2πntT|k=αkej2πktT> =T2T2x(t)ej2πntTdt =T2T2k=αkej2πktTej2πntTdt =k=αkT2T2ej2π(kn)tTdt

If k=n then,

k=αkT2T2ej2π(kn)tTdt=T2T21dt=T

If k;n then,

k=αkT2T2ej2π(kn)tTdt=0

We can simplify the above two conclusion into one equation.

k=αkT2T2ej2π(kn)tTdt=k=Tδk,nαk=Tαn

So, we may conclude αn=1TT2T2x(t)ej2πntTdt

Orthogonal Functions

The function yn(t) and ym(t) are orthogonal on (a,b) if and only if <yn(t)|ym(t)>=abyn*(t)ym(t)dt=0.

The set of functions are orthonormal if and only if <yn(t)|ym(t)>=abyn*(t)ym(t)dt=δm,n.

Linear Systems