10/10,13,16,17 - Fourier Transform Properties

From Class Wiki
Revision as of 17:13, 23 November 2008 by Fonggr (talk | contribs) (??)
Jump to navigation Jump to search

Properties of the Fourier Transform

Linearity

F[ax(t)+bx(t)] =[ax(t)+bx(t)]ej2πftdt
=ax(t)ej2πftdt+bx(t)ej2πftdt
=aF[x(t)]+bF[x(t)]

Time Invariance (Delay)

F[x(tt0)] =x(tt0)ej2πftdt Let u=tt0 and du=dt
=x(u)ej2πf(u+t0)du
=ej2πft0x(u)ej2πfudu
=ej2πft0F[x(t)]

Frequency Shifting

F[ej2πftx(t)] =[ej2πf0tx(t)]ej2πftdt
=x(t)ej2π(ff0)tdt
=X(ff0)

Double Sideband Modulation

F[cos(2πf0t)x(t)] =ej2πf0t+ej2πf0t2x(t)ej2πftdt
=12x(t)[ej2π(ff0)t+ej2π(f+f0)t]dt
=12X(ff0)+12X(f+f0)

Differentiation in Time

x(t) =F1[X(f)]
F[dxdt] =F[ddtF1[X(f)]]
=F[ddtX(f)ej2πftdf]
=F[j2πfX(f)ej2πftdf]
=F[j2πfF1[X(f)]]
=j2πfX(f) Thus dxdt is a linear filter with transfer function j2πf

The Game (frequency domain)

Input LTI System Output Reason
δ(t) h(t) Given
δ(t)ej2πft h(t)ej2πft Proportionality
δ(t)ej2πftdt=F[δ(t)]=1 h(t)ej2πftdt=H(f)How?? Superposition
F[δ(tλ)]=1ej2πfλ The notes have ej2πfλ Is this an error? H(f)ej2πfλ Time Invariance
x(λ)1ej2πfλ x(λ)H(f)ej2πfλ Proportionality
x(λ)1ej2πfλdλ=X1??(F) x(λ)x(λ)H(f)ej2πfλdλ=X1??(F)H(f) Superposition