10/10,13,16,17 - Fourier Transform Properties

From Class Wiki
Jump to navigation Jump to search

Properties of the Fourier Transform

Linearity

F[ax(t)+bx(t)] =[ax(t)+bx(t)]ej2πftdt
=ax(t)ej2πftdt+bx(t)ej2πftdt
=aF[x(t)]+bF[x(t)]

Time Invariance (Delay)

F[x(tt0)] =x(tt0)ej2πftdt Let u=tt0 and du=dt
=x(u)ej2πf(u+t0)du
=ej2πft0x(u)ej2πfudu
=ej2πft0F[x(t)]

Frequency Shifting

F[ej2πftx(t)] =[ej2πf0tx(t)]ej2πftdt
=x(t)ej2π(ff0)tdt
=X(ff0)

Double Sideband Modulation

F[cos(2πf0t)x(t)] =ej2πf0t+ej2πf0t2x(t)ej2πftdt
=12x(t)[ej2π(ff0)t+ej2π(f+f0)t]dt
=12X(ff0)+12X(f+f0)

Differentiation in Time

x(t) =F1[X(f)]
F[dxdt] =F[ddtF1[X(f)]]
=F[ddtX(f)ej2πftdf]
=F[j2πfX(f)ej2πftdf]
=F[j2πfF1[X(f)]]
=j2πfX(f) Thus dxdt is a linear filter with transfer function j2πf

The Game (frequency domain)

  • You can play the game in the frequency or time domain, but not both at the same time
    • Then how can you use the Fourier Transform, but can't build up to it?
Input LTI System Output Reason
δ(t) h(t) Given
δ(t)ej2πft h(t)ej2πft Proportionality
δ(t)ej2πftdt=F[δ(t)]=1 h(t)ej2πftdt=F[h(t)]=H(f) Superposition
δ(tλ)ej2πftdt=F[δ(tλ)]=1ej2πfλ H(f)ej2πfλ Time Invariance
x(λ)1ej2πfλ x(λ)H(f)ej2πfλ Proportionality
x(λ)1ej2πfλdλ=X(F) x(λ)H(f)ej2πfλdλ=X(F)H(f) Superposition
  • Having trouble seeing F[x(t)*h(t)]=X(f)H(f)