10/10,13,16,17 - Fourier Transform Properties

From Class Wiki
Jump to navigation Jump to search

Properties of the Fourier Transform

Linearity

F[ax(t)+bx(t)] =[ax(t)+bx(t)]ej2πftdt
=ax(t)ej2πftdt+bx(t)ej2πftdt
=aF[x(t)]+bF[x(t)]

Time Invariance (Delay)

F[x(tt0)] =x(tt0)ej2πftdt Let u=tt0 and du=dt
=x(u)ej2πf(u+t0)du
=ej2πft0x(u)ej2πfudu
=ej2πft0F[x(t)] Why isn't this F[x(u)]

Frequency Shifting

F[ej2πftx(t)] =[ej2πf0tx(t)]ej2πftdt
=x(t)ej2π(ff0)tdt
=X(ff0)

Double Sideband Modulation

F[cos(2πf0t)x(t)] =ej2πf0t+ej2πf0t2x(t)ej2πftdt
=12x(t)[ej2π(ff0)t+ej2π(f+f0)t]dt
=12X(ff0)+12X(f+f0)

Differentiation in Time

x(t) =F1[X(f)]
F[dxdt] =F[ddtF1[X(f)]]
=F[ddtX(f)ej2πftdf]
=F[j2πfX(f)ej2πftdf]
=F[j2πfF1[X(f)]]
=j2πfX(f) Thus dxdt is a linear filter with transfer function j2πf

The Game (frequency domain)

  • You can play the game in the frequency or time domain, but it's not advisable to play it in both at same time
Input LTI System Output Reason
δ(t) h(t) Given
δ(t)ej2πft h(t)ej2πft Proportionality
δ(t)ej2πftdt=F[δ(t)]=1 h(t)ej2πftdt=F[h(t)]=H(f) Superposition
δ(tλ)ej2πftdt=F[δ(tλ)]=1ej2πfλ H(f)ej2πfλ Time Invariance
x(λ)1ej2πfλ x(λ)H(f)ej2πfλ Proportionality
x(λ)1ej2πfλdλ=X(f) x(λ)H(f)ej2πfλdλ=X(f)H(f) Superposition
  • Having trouble seeing F[x(t)*h(t)]=X(f)H(f)

The Game (Time Domain??)

Input LTI System Output Reason
1ej2πf0t h(t)*ej2πf0t=ej2πf0t*h(t) Proportionality
h(λ)ej2πf0(tλ)dλ dλ from 10/3,6 - The Game
ej2πf0λh(λ)ej2πf0λdλ
ej2πf0tH(f0)
X(f0)ej2πf0t X(f0)ej2πf0tH(f0) Proportionality
X(f0)ej2πf0tdf0=x(t) X(f0)H(f0)ej2πf0tdf0=F1[X(f)H(f)] Superposition

Relation to the Fourier Series

x(t) =x(t+T)
=n=αnej2πnt/T
=m=1αmej2πmt/TNegativefrequencies+α0+n=1αnej2πnt/T
=n=1αnej2πnt/T+α0+n=1αnej2πnt/T Let n=m and reverse the order of summation
Note that αnej2πnt/T is the complex conjugate of αnej2πnt/T
=α0+2[n=1αnej2πnt/T] x(t)+x(t)*=2[x(t)]
  • How can we assume that the answer exists in the real domain?

Aside: Polar coordinates

Remember from 10/02 - Fourier Series that αn=1TT/2T/2x(t)ej2πnt/Tdt

  • Rectangular coordinates: a+jb
  • Polar coordinates: |a+jb|ejθ
  • θ=tan1ba
a+jb =a2+b2(ejθ)
=a2+b2(cos(θ)+jsin(θ))

Building up to F[u(t)]

eiπ =cosπ+isinπ. Euler's Identity
r0(t) =r0(t) Real odd function of t
F[r0(t)] =r0(t)ej2πftdt
=r0(t)[cos(2πft)+jsin(2πft)]dt
=r0(t)[cos(2πft)jsin(2πft)]dt cos(x)=cos(x) & sin(x)=sin(x)
=jr0(t)sin(2πft)dt r0(t)jsin(2πft) = Real odd. Integrates out over symmetric limits.
=Imaginary Odd function of f
re(t) =re(t) Real even function of t
F[re(t)] =re(t)ej2πftdt
=re(t)[cos(2πft)+jsin(2πft)]dt
=re(t)[cos(2πft)jsin(2πft)]dt cos(x)=cos(x) & sin(x)=sin(x)
=re(t)cos(2πft)dt re(t)cos(2πft) = Real odd. Integrates out over symmetric limits.
=Real Even function of f

Definitions

x(t) =xe(t)+xo(t) Can't x(t) have parts that aren't even or odd? You can break any function down into a Taylor series. There are even and odd powers in the series.
xe(t) =x(t)+x(t)2
xo(t) =x(t)x(t)2
u(t) =1+sgn(t)2 sgn(t)={1,t>00,t=01,t<0
ue(t) =12
uo(t) =sgn(t)2

F[u(t)]

F[12] =12ej2πftdt
=12δ(f)
F[sgn(t)2] =sgn(t)2ej2πftdt
=12[01ej2πftdt+01ej2πftdt]
=12[01ej2πftdt+01ej2πftdt]
=120ej2πfuduu=tdu=dt+120ej2πfuduu=tdu=dt
=0ej2πfu+ej2πfu2du
=0jej2πfuej2πfu2jdu
=0jsin(2πfu)du
0cos(2πfu)du