Laplace transforms:Series RLC circuit

From Class Wiki
Jump to navigation Jump to search

Laplace Transform Example: Series RLC Circuit

Problem

Given a series RLC circuit with R=10Ohms, L=0.1H, and C=105F, having power source v(t)=10cos(20t), find an expression for i(t) if i(0)=0A and vc(0)=0V.

Solution

We begin with the general formula for voltage drops around the circuit:

v(t)=Ri+Ldidt+1Cidt

Substituting numbers, we get

10cos(20t)=10i+0.1didt+105idt

cos(20t)=i+0.01didt+10000idt

Now, we take the Laplace Transform and get

ss2+202=I+0.01[sIi(0)]+10000Is

Using the fact that i(0)=0A, we get

ss2+400=I+0.01sI+10000Is

s2s2+400=sI+0.01s2I+10000I

s2s2+400=(0.01s2+s+10000)I

I(s)=s2(s2+400)(0.01s2+s+10000)

Using partial fraction decomposition, we find that

I(s)=1.00044.003*108s0.01s2+s+10000+4.003*106s0.04002s2+400

I(s)=100.044.003*106ss2+100s+1000000+4.003*106s0.04002s2+400

I(s)=100.044.003*106s(s+50)2+997500+4.003*106s0.04002s2+400

I(s)=100.038(s+50)2+(50399)24.003*106s+.002(s+50)2+(50399)2+4.003*106ss2+2020.04002s2+202

I(s)=10.0385039950399(s+50)2+(50399)24.003*106s+50(s+50)2+(50399)2+4.003*106ss2+2020.040022020s2+202

Finally, we take the inverse Laplace transform to obtain

i(t)=0.01e50tsin(998.8t)(4.003*106)e50tcos(998.8t)+(4.003*106)cos(20t)0.002sin(20t)

which is our answer.

Written by Nathan Reeves

Checked by