Laplace transforms: Critically Damped Motion
Jump to navigation
Jump to search
Using the Laplace Transform to solve a spring mass system that is critically damped
Problem Statement
An 8 pound weight is attached to a spring with a spring constant k of 4 lb/ft. The spring is stretched 2 ft and rests at its equilibrium position. It is then released from rest with an initial upward velocity of 3 ft/s. The system contains a damping force of 2 times the initial velocity.
Solution
Things we know
Failed to parse (syntax error): {\displaystyle \text {Now that we have the equation written in standard form we need to send it through the Laplace Transform}\,}