Problem Statement
Figure 1. Coupled Spring System. Derive the system of differential equations describing the straight-line vertical motion of the coupled spring shown in Figure 1. Use Laplace transform to solve the system when
k 1 = k 2 = k 3 = 1 ,
m 1 = m 2 = 1 , and
x 1 ( 0 ) = 0 ,
x ′ 1 ( 0 ) = − 1 ,
x 2 ( 0 ) = 0 , and
x ' 2 ( 0 ) = 1 .
Solution
At positions x 1 and x 2 , the masses m 1 and m 2 are in equilibrium. Thus, the motion equations for m 1 and m 2 are,
m 1 x ¨ 1 = − k 1 x 1 + k 2 ( x 2 − x 1 )
∴ m 1 x ¨ 1 + k 1 x 1 − k 2 ( x 2 − x 1 ) = 0
m 2 x ¨ 2 = − k 2 ( x 2 − x 1 ) − k 3 x 2
∴ m 2 x ¨ 2 + k 2 ( x 2 − x 1 ) − k 3 x 2 = 0
where m 1 x ′ ' 1 and m 2 x ′ ' 2 represent the Newton's Second Law of Motion and − k 1 x 1 + k 2 ( x 2 − x 1 ) and − k 2 ( x 2 − x 1 ) − k 3 x 2 represent the net forces acting in the masses.
Laplace Transform
Applying the Laplace Transform to the motion equations and plugging the values of k 1 , k 2 , k 3 , m 1 , m 2 , x 1 ( 0 ) , x ′ 1 ( 0 ) , x 2 ( 0 ) , and x ' 2 ( 0 ) for this systems, we obtain,
ℒ [ m 1 x ¨ 1 + k 1 x 1 − k 2 ( x 2 − x 1 ) ] = 0
m 1 [ s 2 X 1 ( s ) − s x 1 ( 0 ) − x ˙ 1 ( 0 ) ] + k 1 X 1 ( s ) − k 2 ( X 2 ( s ) − X 1 ( s ) ) = 0
X 1 ( s ) ( m 1 s 2 + k 1 + k 2 ) = m 1 ( s x 1 ( 0 ) − x ˙ 1 ( 0 ) ) + k 2 X 2 ( s )
X 1 ( s ) = m 1 ( s x 1 ( 0 ) + x ˙ 1 ( 0 ) ) + k 2 X 2 ( s ) ( m 1 s 2 + k 1 + k 2 )
X 1 ( s ) = X 2 ( s ) − 1 ( s 2 + 2 )
ℒ [ m 2 x ¨ 2 + k 2 ( x 2 − x 1 ) + k 3 x 2 ] = 0
m 2 [ s 2 X 2 ( s ) − s x 2 ( 0 ) − x ˙ 2 ( 0 ) ] + k 2 ( X 2 ( s ) − X 1 ( s ) ) + k 3 X 2 ( s ) = 0
X 2 ( s ) ( m 2 s 2 + k 2 + k 3 ) = m 2 ( s x 2 ( 0 ) − x ˙ 2 ( 0 ) ) + k 2 X 1 ( s )
X 2 ( s ) = m 2 ( s x 2 ( 0 ) + x ˙ 2 ( 0 ) ) + k 2 X 1 ( s ) ( m 2 s 2 + k 2 + k 3 )
X 2 ( s ) = X 1 ( s ) + 1 ( s 2 + 2 )
Finally, solving for X 1 ( s ) and X 2 ( s ) yields,
X 1 ( s ) = − 1 s 2 + 3
X 2 ( s ) = 1 s 2 + 3
Inverse Laplace Transform
ℒ − 1 [ X 1 ( s ) ] = ℒ − 1 [ − 1 s 2 + 3 ] = − 1 3 s i n ( 3 t )
ℒ − 1 [ X 2 ( s ) ] = ℒ − 1 [ 1 s 2 + 3 ] = 1 3 s i n ( 3 t )