Write up on the Wiki a solution of a coupled oscillator problem like the coupled pendulum. Use State Space methods. Describe the eigenmodes of the system.
Initial Conditions:
State Equations
[ x 1 ˙ x 1 ¨ x 2 ˙ x 2 ¨ ] {\displaystyle {\begin{bmatrix}{\dot {x_{1}}}\\{\ddot {x_{1}}}\\{\dot {x_{2}}}\\{\ddot {x_{2}}}\end{bmatrix}}\,} = [ 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 ] [ x 1 x ˙ 1 x 2 x ˙ 2 ] + [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ] [ 0 0 0 0 ] {\displaystyle {\begin{bmatrix}0&1&0&0\\0&0&0&0\\0&0&0&1\\0&0&0&0\end{bmatrix}}{\begin{bmatrix}x_{1}\\{\dot {x}}_{1}\\x_{2}\\{\dot {x}}_{2}\end{bmatrix}}+{\begin{bmatrix}0&0&0&0\\0&0&0&0\\0&0&0&0\\0&0&0&0\end{bmatrix}}{\begin{bmatrix}0\\0\\0\\0\end{bmatrix}}}
Eigenmodes
Written by: Andrew Hellie