Coupled Oscillator: Hellie

From Class Wiki
Jump to navigation Jump to search

Problem Statement

Write up on the Wiki a solution of a coupled oscillator problem like the coupled pendulum. Use State Space methods. Describe the eigenmodes of the system.

 

Initial Conditions:

m1=10kg
m2=10kg
k1=100N/m
k2=150N/m
k3=100N/m

State Equations

[x1˙x1¨x2˙x2¨] = [0100(k1k2)m10k1m100001k1m20(k1+k2)m20][x1x˙1x2x˙2]+[0000000000000000][0000]

With the numbers...


[x1˙x1¨x2˙x2¨] = [0100(50N/m)10kg0100N/m10kg00001100N/m10kg0(250N/m)10kg0][x1x˙1x2x˙2]


[x1˙x1¨x2˙x2¨] = [0100501000001100250][x1x˙1x2x˙2]


Eigenvalues

λ1=5.29412

λ2=2.83333i

λ3=2.83333i

λ4=0


Eigenvectors

k1=[.05379.28475.17764.94046]


k2=[.31854i.90253.09645i.27326]


k3=[.31854i.90253.09645i.27326]


k4=[.05379.28475.17764.94046]


Eigenmodes

There are two eigenmodes for the system
1) m1 and m2 oscillating together
2) m1 and m2 oscillating at exactly a half period difference



Solve Using the Matrix Exponential


eAt=1{[SIA]1}


[SIA] = [S100(50N/m)15kgS100N/m15kg000S1100N/m15kg0(250N/m)15kgS]


[SIA]1=


1{[SIA]1}=


Written by: Andrew Hellie