Linear Time Invariant System
Jump to navigation
Jump to search
Linear Time Invariant Systems (LTI Systems)
A linear time invariant system is one that is linear (superposition and proportionality apply) and one that doesn't change with time. For example a circuit with fixed capacitors, resistors, and inductors having an input and an output is linear and time invariant. If a capacitor changed value with time, then it would not be time invariant.
Eigenfunctions and Eigenvalues of an LTI Systems
It is an interesting exercise to show that are eigenfunctions of any LTI system. The eigenvalues are .
Input | Output | Reason |
---|---|---|
Given | ||
Time invariance | ||
Proportionality | ||
Superposition | ||
Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_{-\infty}^{\infty} e^{j \omeag \lambda} h(t- \lambda ) d \lambda} |