x(t)=x(t+T)=a0+∑n=1∞ancos(nω0t)+bnsin(nω0t)a0=1T∫0Tf(t)dtan=2T∫0Tf(t)cos(nω0t)dtbn=2T∫0Tf(t)sin(nω0t)dt
a0=1T∫012THdt+1T∫12TT−Hdt=1T[Ht]|t=012T−1T[Ht]|t=12TT=1TH12T−0−[1THT−1TH12T]=H2−[H−12H]=H2−H2=0
an=2T∫012THcos(nω0t)dt+2T∫12TT−Hcos(nω0t)dt=2T[Hnω0sin(nω0t)]012T+2T[−Hnω0sin(nω0t)]12TT=2T[Hn2πTsin(nπ)]=0
TODO: finish