Signals and Systems: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
Line 88: Line 88:


[[FIR Filter Example Code for Octave]]
[[FIR Filter Example Code for Octave]]

[[FIR Filter Design and Testing Using the DFT]]


[[Leakage Example Octave Script]]
[[Leakage Example Octave Script]]
Line 96: Line 98:


[[Airplane Noise Removal Demonstration]]
[[Airplane Noise Removal Demonstration]]

[[FIR Filter Design and Testing Using the DFT]]


===Final Project (2011)===
===Final Project (2011)===

Revision as of 10:03, 3 December 2013

Topics

Overview of Signals and Systems

Individual Subjects

Some Useful Links to Suppliment or Substitute for a Textbook

Books on Signal Processing

Fourier Series

Dirac Delta Function and Convolution

Multi-rate Filtering

Multirate Filters Introduction

Slides from a Presentation on Polyphase Decimation and Interpolation by Mark Fowler

FIR Filters

This is a very easy-to-understand summary of FIR basics, properties, design, and implementation

Another easy-to-understand article about decimation

Another easy-to-understand article about interpolation

Fast Convolution Based on the FFT This reference shows how end effects are dealt with. To use the FFT for convolution, you need to do it in blocks, which leads to end effects, and more latency, but if your blocks are big enough, it speeds up the convolution.

Adaptive FIR Filters

Introduction to Adaptive Filters, Simon Haykin

Simon Haykin's book chapter

Adaptive LMS in an FPGA

Scott Douglas' chapter on Adaptive Filters has some interesting applications, among them linear predictive coding (LPC) used in speech codecs.

Adaptive Filters In the Frequency Domain

Constant Modulus Algorythm

Using the CMA on antenna arrays

Course Pages

2005-2006 Assignments

2006-2007 Assignments

2008-2009 Assignments

2009-2010 Assignments

Class notes for Signals & Systems

Articles

Octave Tutorials

Installing Octave on a Mac (Chris Lau)

Octave and Scilab on a Mac (Ben Henry)

Installing Octave (with the GUI) from source on Ubuntu

ASN2 - Octave Tutorial (Jodi S. Hodge)

A u(t) function example

FIR Filter Example Code for Octave

FIR Filter Design and Testing Using the DFT

Leakage Example Octave Script

Interpolation using the DFT Example Script

Tuner Upper Removal Demonstration

Airplane Noise Removal Demonstration

Final Project (2011)

Matlab/Octave deMorse.m

morse.m This is the one from mathworks

Table of Fourier Transform Properties

Homework Assignments

Please put your name next to the assignment, linking it to your submission

  • HW #4 - Given a linear time-invariant system where produces an output , find the output due to any function (Chris Lau)
  • HW #5: (Chris Lau)
    • Part 1 - Find and relate it to the Laplace Transform. Derive the Inverse Laplace Transform of this from the inverse Fourier Transform.
    • Part 2 -
      20101006KeyDSCN3161.jpg
  • HW #6 - Pick a property of the Fourier Transform & present it on the Wiki. Make a table with all your properties. Interpret your property. (Ben Henry)(Chris Lau)(Victor Shepherd)
  • HW #7 - Finish the practice tests
  • HW #8 - Make a page about interpolating FIR filters. Note how many multiply/add operations.(Jodi S. Hodge)(Chris Lau)(Victor Shepherd)
  • HW #9 - Add to #8 writeup how to do a decimating filter and figure out how many multiply & adds are needed for a n/2 decimating low pass filter.(Jodi S. Hodge)(Chris Lau)(Victor Shepherd)
  • HW #10 - Use Octave (or Mathlab or Silab) to plot the frequency response of low pass filters with cut off frequencies of 1/32T, 1/8T, and 1/4T and compare how many coeffficients are needed with an eye to answer the question "Is it less calculation to decimate and then filter, or better to put the filter in the pre-decimation filter?" (Jodi S. Hodge)(Victor Shepherd)
  • HW #11 - Is our method the same as Mark Fowler's? See

Wiki. Same # multiply and adds? See Notes 11/3/10. (Jodi S. Hodge)(Victor Shepherd)

  • HW #12 - Experiment with a variety of signals having a 3Khz bandwidth to determine the resolution you can get when doing a cross correlation . You can generate the signals randomly and filter them to obtain the band-limited signals. (Jodi S. Hodge)
  • HW #13 - Derive the following realtions:
    • a)
    • b)
    • c) (Victor Shepherd)

People Involved with this Wiki

2012-2013 Contributors

Brian Haddad

Kurt Hildebrand

Denver Lodge

Michael von Pohle

2011-2012 Contributors

Matthew Blaire

Cody Lorenz

2010-2011 Contributors

Ben Henry

Christopher Garrison Lau I

Chris Wills

Jodi S. Hodge

Luke Chilson

Victor Shepherd

2009-2010 Contributors

Nick Christman

Joshua Sarris

Kevin Starkey

Max Woesner

Jodi Hodge

Corneliu Turturica

2008-2009 Contributors

Eric Clay

Chuck Yang

Elton Zebron

Luke Chilson

Brandon Price

Greg Fong

2007-2008 contributors

Baldwin Britton

Denver Harris

Mark Priddy

Chris Rasmussen

Michael Roth

Sally Roth

2006-2007 contributors

Ryan J Smith

Nathan Ferch

Andrew Lopez

Nathan Sherman

Chris Adkins

2005-2006 contributors

Gabriela Valdivia

Raymond Betz

Jenni Christensen

Jeffrey Wonoprabowo

Paul Wilson

Instructor: Rob Frohne

2004-2005 contributors

Sam Barnes

Shawn Santana

Aric Goe

Todd Caswell

David Anderson

Anthony Guenterberg