EMEC - Greg
From Class Wiki
Jump to navigation
Jump to search
Definitions
Electromagnetism Units
Symbol
Units
Name
Definition
Flux
A scalar value. The rate of transfer of energy (or another physical quantity) per unit area. <ref>
Wiktionary - Flux
</ref>
E
→
{\displaystyle {\overrightarrow {E}}}
V
M
{\displaystyle {\frac {V}{M}}}
Electric field (intensity/strength)
The space surrounding an electric charge. It will exert a force on other electrically charged objects.
D
→
{\displaystyle {\overrightarrow {D}}}
C
M
2
{\displaystyle {\frac {C}{M^{2}}}}
Electric (flux density/displacement field)
The amount of electric flux in a unit area perpendicular to the direction of electric field
H
→
{\displaystyle {\overrightarrow {H}}}
A
M
{\displaystyle {\frac {A}{M}}}
Magnetic field (intensity/strength)
A magnetic field is a vector field which surrounds magnets and electric currents, and is detected by the force it exerts on moving electric charges and on magnetic materials. <ref>
Magnetic field
</ref>
B
→
{\displaystyle {\overrightarrow {B}}}
T
=
W
M
2
{\displaystyle T={\frac {W}{M^{2}}}}
Magnetic (flux density/induction)
The amount of magnetic flux in a unit area perpendicular to the direction of magnetic flow <ref>
Magnetic flux density
</ref>
Electric field lines <ref>
Electric field lines
</ref>
Electric flux density <ref>
Electric flux density
</ref>
Analogies between Electric & Magnetic Circuits
Electric
Magnetic
Notes
V
=
∫
E
→
d
l
→
{\displaystyle V=\int {\overrightarrow {E}}{\overrightarrow {dl}}}
F
→
=
∫
H
→
d
l
→
{\displaystyle {\overrightarrow {F}}=\int {\overrightarrow {H}}{\overrightarrow {dl}}}
∑
n
V
n
=
0
=
∮
E
→
d
l
→
{\displaystyle \sum _{n}V_{n}=0=\oint {\overrightarrow {E}}{\overrightarrow {dl}}}
∮
H
→
d
l
→
=
N
i
=
∑
n
H
l
+
N
i
=
0
{\displaystyle \oint {\overrightarrow {H}}{\overrightarrow {dl}}=Ni=\sum _{n}Hl+Ni=0}
Kirchoff's voltage law, Ampere's law
∑
n
I
n
=
0
=
∮
S
J
→
d
S
→
{\displaystyle \sum _{n}I_{n}=0=\oint _{S}{\overrightarrow {J}}{\overrightarrow {dS}}}
∮
B
→
d
S
→
=
0
{\displaystyle \oint {\overrightarrow {B}}{\overrightarrow {dS}}=0}
Kirchoff's current law, The B-field has to go around in a loop
∮
J
→
d
S
→
=
I
{\displaystyle \oint {\overrightarrow {J}}{\overrightarrow {dS}}=I}
∫
B
→
d
S
→
=
Φ
{\displaystyle \int {\overrightarrow {B}}{\overrightarrow {dS}}=\Phi }
Magnetic flux, Phi
R
=
V
I
{\displaystyle R={\frac {V}{I}}}
R
=
F
Φ
=
N
i
Φ
{\displaystyle {\mathfrak {R}}={\frac {F}{\Phi }}={\frac {Ni}{\Phi }}}
Reluctance
I
=
V
R
=
G
V
{\displaystyle I={\frac {V}{R}}=GV}
or
J
→
=
σ
E
→
{\displaystyle {\overrightarrow {J}}=\sigma {\overrightarrow {E}}}
B
→
=
μ
H
{\displaystyle {\overrightarrow {B}}=\mu H}
Assumes linearity - exceptions: Hysterisis loop, etc
References
<references/>
Navigation menu
Personal tools
Log in
Namespaces
Page
Discussion
English
Views
Read
View source
View history
More
Search
Navigation
Main page
Class Notes
Assembly
Circuits
LNA
Feedback
Electronics
EMEC
Signals
Digital Control
Communications
Power Electronics
Intro to CAD
E&M
Embedded
Help
Tools
What links here
Related changes
Special pages
Printable version
Permanent link
Page information