If ⟨ ϕ n | ϕ m ⟩ = δ m n {\displaystyle \left\langle \phi _{n}|\phi _{m}\right\rangle =\delta _{mn}} and ϕ n {\displaystyle \phi _{n}\,\!} span the space of functions for which x ( t ) {\displaystyle x(t)\,\!} and y ( t ) {\displaystyle y(t)\,\!} are members and x ( t ) = ∑ n a n ϕ n ( t ) {\displaystyle x(t)=\sum _{n}a_{n}\phi _{n}(t)\,\!} and y ( t ) = ∑ m b m ϕ m ( t ) {\displaystyle y(t)=\sum _{m}b_{m}\phi _{m}(t)\,\!} , then show
⟨ x | y ⟩ = ∫ − ∞ ∞ x ( t ) y ( t ) ∗ d t {\displaystyle \left\langle x|y\right\rangle =\int _{-\infty }^{\infty }x(t)y(t)^{*}\,dt}