HW: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
*[[Signals and systems|Signals and Systems]] |
|||
asdfasdfasdfasdf |
|||
==An Introduction to the Fourier Transform== |
|||
A Fourier Transform is a representation of a function using a large number of sinusoids added together to create it. |
|||
For example, a square wave could be represented by: |
|||
<math>x_{\mathrm{square}}(t) = \frac{4}{\pi} \sum_{k=1}^\infty {\sin{\left ((2k-1)2\pi ft \right )}\over(2k-1)} </math> |
|||
X(f)=\int_{-\infty}^{\infty} x(t) e^{-j2\pi ft}\, dt |
|||
</math> |
|||
<br> |
|||
<br> |
|||
Suppose that we have some function, say <math> \beta (t) </math>, that is nonperiodic and finite in duration.<br> |
|||
This means that <math> \beta(t)=0 </math> for some <math> T_\alpha < \left | t \right | </math> |
|||
<br><br> |
|||
Now let's make a periodic function |
|||
<math> |
|||
\gamma(t) |
|||
</math> |
|||
by repeating |
|||
<math> |
|||
\beta(t) |
|||
</math> |
|||
with a fundamental period |
|||
<math> |
|||
T_\zeta |
|||
</math>. |
|||
Note that |
|||
<math> |
|||
\lim_{T_\zeta \to \infty}\gamma(t)=\beta(t) |
|||
</math> |
|||
<br> |
|||
The Fourier Series representation of <math> \gamma(t) </math> is |
|||
<br> |
|||
<math> |
|||
\gamma(t)=\sum_{k=-\infty}^\infty \alpha_k e^{j2\pi fkt} |
|||
</math> |
|||
where |
|||
<math> |
|||
f={1\over T_\zeta} |
|||
</math> |
|||
<br>and |
|||
<math> |
|||
\alpha_k={1\over T_\zeta}\int_{-{T_\zeta\over 2}}^{{T_\zeta\over 2}} \gamma(t) e^{-j2\pi kt}\,dt |
|||
</math> |
|||
<br> |
|||
<math> \alpha_k </math> can now be rewritten as |
|||
<math> |
|||
\alpha_k={1\over T_\zeta}\int_{-\infty}^{\infty} \beta(t) e^{-j2\pi kt}\,dt |
|||
</math> |
|||
<br>From our initial identity then, we can write <math> \alpha_k </math> as |
|||
<math> |
|||
\alpha_k={1\over T_\zeta}\Beta(kf) |
|||
</math> |
|||
<br> and |
|||
<math> |
|||
\gamma(t) |
|||
</math> |
|||
becomes |
|||
<math> |
|||
\gamma(t)=\sum_{k=-\infty}^\infty {1\over T_\zeta}\Beta(kf) e^{j2\pi fkt} |
|||
</math> |
|||
<br> |
|||
Now remember that |
|||
<math> |
|||
\beta(t)=\lim_{T_\zeta \to \infty}\gamma(t) |
|||
</math> |
|||
and |
|||
<math> |
|||
{1\over {T_\zeta}} = f. |
|||
</math> |
|||
<br> |
|||
Which means that |
|||
<math> |
|||
\beta(t)=\lim_{f \to 0}\gamma(t)=\lim_{f \to 0}\sum_{k=-\infty}^\infty f \Beta(kf) e^{j2\pi fkt} |
|||
</math> |
|||
<br> |
|||
Which is just to say that |
|||
<math> |
|||
\beta(t)=\int_{-\infty}^\infty \Beta(f) e^{j2\pi fkt}\,df |
|||
</math> |
|||
<br> |
|||
<br> |
|||
So we have that |
|||
<math> |
|||
\mathcal{F}[\beta(t)]=\Beta(f)=\int_{-\infty}^{\infty} \beta(t) e^{-j2\pi ft}\, dt |
|||
</math> |
|||
<br> |
|||
Further |
|||
<math> |
|||
\mathcal{F}^{-1}[\Beta(f)]=\beta(t)=\int_{-\infty}^\infty \Beta(f) e^{j2\pi fkt}\,df |
|||
</math> |
|||
==Some Useful Fourier Transform Pairs== |
|||
<math> |
|||
\mathcal{F}[\alpha(t)]=\frac{1}{\mid \alpha \mid}f(\frac{\omega}{\alpha}) |
|||
</math> |
|||
<br> |
|||
{| |
|||
|- |
|||
|<math>\mathcal{F}[c_1\alpha(t)+c_2\beta(t)]</math> |
|||
|<math>=\int_{-\infty}^{\infty} (c_1\alpha(t)+c_2\beta(t)) e^{-j2\pi ft}\, dt</math> |
|||
|- |
|||
| |
|||
|<math>=\int_{-\infty}^{\infty}c_1\alpha(t)e^{-j2\pi ft}\, dt+\int_{-\infty}^{\infty}c_2\beta(t)e^{-j2\pi ft}\, dt</math> |
|||
|- |
|||
| |
|||
|<math>=c_1\int_{-\infty}^{\infty}\alpha(t)e^{-j2\pi ft}\, dt+c_2\int_{-\infty}^{\infty}\beta(t)e^{-j2\pi ft}\, dt=c_1\Alpha(f)+c_2\Beta(f)</math> |
|||
|- |
|||
|} |
|||
<br> |
|||
<math> |
|||
\mathcal{F}[\alpha(t-\gamma)]=e^{-j2\pi f\gamma}\Alpha(f) |
|||
</math> |
|||
<br> |
|||
<math> |
|||
\mathcal{F}[\alpha(t)*\beta(t)]=\Alpha(f)\Beta(f) |
|||
</math> |
|||
<br> |
|||
<math> |
|||
\mathcal{F}[\alpha(t)\beta(t)]=\Alpha(f)*\Beta(f) |
|||
</math> |
|||
<br> |
|||
Some other usefull pairs can be found here: [[Fourier Transforms]] |
|||
==A Second Approach to Fourier Transforms== |
|||
*[[Fourier Transforms]] |
Revision as of 17:48, 8 October 2007
An Introduction to the Fourier Transform
A Fourier Transform is a representation of a function using a large number of sinusoids added together to create it.
For example, a square wave could be represented by:
X(f)=\int_{-\infty}^{\infty} x(t) e^{-j2\pi ft}\, dt
</math>
Suppose that we have some function, say , that is nonperiodic and finite in duration.
This means that for some
Now let's make a periodic function
by repeating
with a fundamental period
.
Note that
The Fourier Series representation of is
where
and
can now be rewritten as
From our initial identity then, we can write as
and
becomes
Now remember that
and
Which means that
Which is just to say that
So we have that
Further
Some Useful Fourier Transform Pairs
Some other usefull pairs can be found here: Fourier Transforms