FourierTransformsJW: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
 
(3 intermediate revisions by the same user not shown)
Line 18: Line 18:


===Some Properties of the Fourier Transform===
===Some Properties of the Fourier Transform===
Let <math>x(t) = \mathcal{F}^{-1}[X(f)] = \int_{-\infty}^\infty X(f) e^{j 2 \pi f t} df</math>
Given: <math>x(t) = \mathcal{F}^{-1}[X(f)] = \int_{-\infty}^\infty X(f) e^{j 2 \pi f t} df</math>


=====Differentiation=====
=====Differentiation=====
Line 31: Line 31:


=====Frequency Shift =====
=====Frequency Shift =====
<math>X(f) = \mathcal{F}^{-1}[X(f)] = \int_{-\infty}^\infty X(f) e^{j 2 \pi f t}df </math
Given: <math>X(f) = \mathcal{F}^{-1}[X(f)] = \int_{-\infty}^\infty X(f) e^{j 2 \pi f t}df </math>


<math>X(f-f_o) = \int_{-\infty}^\infty X(f) e^{j 2 \pi (f-f_o) t}df </math>
<math>X(f-f_o) = \int_{-\infty}^\infty X(f) e^{j 2 \pi (f-f_o) t}df = \mathcal{F}[e^{j 2 \pi f_o t}x(t)]</math>

=====Modulation=====
<math>\mathcal{F}[cos(2 \pi f_o t)x(t)] = \int_{\infty}^\infty x(t)cos(2 \pi f_o t) e^{-j 2 \pi f t} dt</math>

<math>= \int_{\infty}^\infty \frac{e^{j 2 \pi f_o t} + e^{-j 2 \pi f_o t}}{2} x(t) e^{j 2 \pi f t} dt </math>

<math> = \frac{1}{2} \int_{\infty}^\infty x(t) e^{-j 2 \pi (f-f_o) t} dt + \frac{1}{2} \int_{\infty}^\infty x(t)e^{-j 2 \pi (f+f_o) t} dt</math>

<math> = \frac{1}{2}X(f-f_o) + \frac{1}{2}X(f+f_o)</math>





Latest revision as of 19:57, 4 December 2005

Fourier Transform

Introduction

A Fourier series allows a periodic function to be represented as the sum of sine and/or cosine waves. This is very useful, because functions in the time domain can be expressed in the frequency domain. The frequency domain can, at times, be easier to work with. This is where the Fourier transfrom comes in. It allows for a nonperidic function of time to be converted (or transformed) into a function of frequency.

This conversion is analgous to the conversion from cartesian coordinates to polar or spherical coordinates. The location of the point does not change; only the directions for how to get there.

Fourier Transform Defined

The Fourier Transform of a function can be defined as:

then the inverse Fourier transform of a function will be:

where is a function of time and is the Fourier transform of and is it's Fourier Transform.


Some Properties of the Fourier Transform

Given:

Differentiation

Time Shift

Frequency Shift

Given:

Modulation


Principle author of this page: Jeffrey Wonoprbowo