HW 03: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 12: Line 12:


==Solution==
==Solution==
{| border="0" cellpadding="0" cellspacing="0"
#<math>\int_{-\infty}^{\infty} \sum _n a_n \phi_n (t) \left ( \sum _n b_n \phi_n (t) \right )^*\,dt</math>
|-
#<math>\int_{-\infty}^{\infty} \sum _n a_n \phi_n (t) \left ( \sum _n a_n \phi_n (t) \right )^*\,dt</math>
|<math>\int_{-\infty}^{\infty} \sum _n a_n \phi_n (t) \sum _n b_n \phi_n (t)^* \,dt</math>
|<math>=\sum_n a_n b_n \int_{-\infty}^{\infty} \phi_n (t) \phi_n (t)^* \,dt</math>
|-
|
|<math>=\sum_n a_n b_n \left \langle \phi_n (t) | \phi_n (t)^* \right \rangle</math>
|-
|
|<math>=\sum_n a_n b_n \delta_{nn^*}</math>
|}


#<math>\int_{-\infty}^{\infty} \sum _n a_n \phi_n (t) \sum _n a_n \phi_n (t)^* \,dt</math>

Revision as of 15:16, 12 November 2008

Problem

If and span the space of functions for which and are members and and , then show

Notes

  • This notation is called the Bra Ket , or Dirac notation. It denotes the inner product.

Solution