HW 03: Difference between revisions
		
		
		
		Jump to navigation
		Jump to search
		
| No edit summary | No edit summary | ||
| Line 2: | Line 2: | ||
| If <math> \left \langle \phi_n | \phi_m \right \rangle = \delta_{mn}</math> and <math> \phi_n \,\!</math> span the space of functions for which <math>x(t)\,\!</math> and <math>y(t)\,\!</math> are members and   | If <math> \left \langle \phi_n | \phi_m \right \rangle = \delta_{mn}</math> and <math> \phi_n \,\!</math> span the space of functions for which <math>x(t)\,\!</math> and <math>y(t)\,\!</math> are members and   | ||
| <math>x(t)= \sum _n a_n \phi_n (t)\,\!</math> and   | <math>x(t)= \sum _n a_n \phi_n (t)\,\!</math> and   | ||
| <math>y(t)= \sum  | <math>y(t)= \sum _m b_m \phi_m (t)\,\!</math>, then show | ||
| #<math> \left \langle x | y \right \rangle = \sum_n a_n b_n^*</math> | #<math> \left \langle x | y \right \rangle = \sum_n a_n b_n^*</math> | ||
| Line 14: | Line 14: | ||
| {| border="0" cellpadding="0" cellspacing="0" | {| border="0" cellpadding="0" cellspacing="0" | ||
| |- | |- | ||
| |<math>\int_{-\infty}^{\infty} \sum _n a_n \phi_n (t) \sum  | |<math>\int_{-\infty}^{\infty} \sum _n a_n \phi_n (t) \sum _m b_n \phi_n (t)^* \,dt</math> | ||
| |<math>=\sum_n a_n  | |<math>=\sum_n \sum _m a_n b_m^* \int_{-\infty}^{\infty} \phi_n (t) \phi_m (t)^* \,dt</math> | ||
| |- | |- | ||
| | | | | ||
| |<math>=\sum_n a_n  | |<math>=\sum_n \sum _m a_n b_m^* \left \langle \phi_n (t) | \phi_m (t)^* \right \rangle</math> | ||
| |- | |- | ||
| | | | | ||
| |<math>=\sum_n a_n  | |<math>=\sum_n \sum _m a_n b_m^* \delta_{nm^*}</math> | ||
| |- | |||
| | | |||
| |<math>=\sum_n a_n b_n^*</math> | |||
| |} | |} | ||
| <math>\int_{-\infty}^{\infty} \sum _n a_n \phi_n (t) \sum _n a_n \phi_n (t)^* \,dt</math> | |||
Revision as of 16:26, 12 November 2008
Problem
If and span the space of functions for which and are members and and , then show
Notes
- This notation is called the Bra Ket , or Dirac notation. It denotes the inner product.
Solution