HW 03: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
Fonggr (talk | contribs)
New page: ==Problem== If <math> \left \langle \phi_n | \phi_m \right \rangle = \delta_{mn}</math> and <math> \phi_n \,\!</math> span the space of functions for which <math>x(t)\,\!</math> and <math>...
 
Fonggr (talk | contribs)
 
(8 intermediate revisions by the same user not shown)
Line 1: Line 1:
==Problem==
==Problem==
If <math> \left \langle \phi_n | \phi_m \right \rangle = \delta_{mn}</math> and <math> \phi_n \,\!</math> span the space of functions for which <math>x(t)\,\!</math> and <math>y(t)\,\!</math> are members and <math>x(t)= \sum _n a_n \phi_n (t)\,\!</math> and <math>y(t)= \sum _n b_n \phi_n (t)\,\!</math>, then show
If <math> \left \langle \phi_n | \phi_m \right \rangle = \delta_{mn}</math> and <math> \phi_n \,\!</math> span the space of functions for which <math>x(t)\,\!</math> and <math>y(t)\,\!</math> are members and  
<math>x(t)= \sum _n a_n \phi_n (t)\,\!</math> and  
<math>y(t)= \sum _m b_m \phi_m (t)\,\!</math>, then show
 
#<math> \left \langle x | y \right \rangle = \sum_n a_n b_n^*</math>
#<math> \left \langle x | y \right \rangle = \sum_n a_n b_n^*</math>
#<math> \left \langle x | x \right \rangle = \sum_n \left | a_n \right |^2</math>
#<math> \left \langle x | x \right \rangle = \sum_n \left | a_n \right |^2</math>
Line 6: Line 9:
==Notes==
==Notes==
<math> \left \langle x | y \right \rangle = \int_{-\infty}^{\infty}x(t)y(t)^*\,dt</math>
<math> \left \langle x | y \right \rangle = \int_{-\infty}^{\infty}x(t)y(t)^*\,dt</math>
*This notation is called the Bra <math> \langle\phi| </math> Ket <math>|\psi\rangle</math>, or Dirac notation. It denotes the inner product.
==Solution==
{| border="0" cellpadding="0" cellspacing="0"
|-
|<math>\int_{-\infty}^{\infty} \sum _n a_n \phi_n (t) \sum _m b_m \phi_m (t)^* \,dt</math>
|<math>=\sum_n \sum _m a_n b_m^* \int_{-\infty}^{\infty} \phi_n (t) \phi_m (t)^* \,dt</math>
|-
|
|<math>=\sum_n \sum _m a_n b_m^* \left \langle \phi_n (t) | \phi_m (t) \right \rangle</math>
|-
|
|<math>=\sum_n \sum _m a_n b_m^* \delta_{nm}</math>
|-
|
|<math>=\sum_n a_n b_n^*</math>
|}
{| border="0" cellpadding="0" cellspacing="0"
|-
|<math>\int_{-\infty}^{\infty} \sum _n a_n \phi_n (t) \sum _m a_m \phi_m (t)^* \,dt</math>
|<math>=\sum_n \sum _m a_n a_m^* \int_{-\infty}^{\infty} \phi_n (t) \phi_m (t)^* \,dt</math>
|-
|
|<math>=\sum_n \sum _m a_n a_m^* \left \langle \phi_n (t) | \phi_m (t) \right \rangle</math>
|-
|
|<math>=\sum_n \sum _m a_n a_m^* \delta_{nm}</math>
|-
|
|<math>=\sum_n \left | a_n \right |^2</math>
|}

Latest revision as of 18:27, 12 November 2008

Problem

If ϕn|ϕm=δmn and ϕn span the space of functions for which x(t) and y(t) are members and x(t)=nanϕn(t) and y(t)=mbmϕm(t), then show

  1. x|y=nanbn*
  2. x|x=n|an|2

Notes

x|y=x(t)y(t)*dt

  • This notation is called the Bra ϕ| Ket |ψ, or Dirac notation. It denotes the inner product.

Solution

nanϕn(t)mbmϕm(t)*dt =nmanbm*ϕn(t)ϕm(t)*dt
=nmanbm*ϕn(t)|ϕm(t)
=nmanbm*δnm
=nanbn*
nanϕn(t)mamϕm(t)*dt =nmanam*ϕn(t)ϕm(t)*dt
=nmanam*ϕn(t)|ϕm(t)
=nmanam*δnm
=n|an|2