HW 03: Difference between revisions
Jump to navigation
Jump to search
(→Notes) |
|||
(7 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
==Problem== |
==Problem== |
||
If <math> \left \langle \phi_n | \phi_m \right \rangle = \delta_{mn}</math> and <math> \phi_n \,\!</math> span the space of functions for which <math>x(t)\,\!</math> and <math>y(t)\,\!</math> are members and |
If <math> \left \langle \phi_n | \phi_m \right \rangle = \delta_{mn}</math> and <math> \phi_n \,\!</math> span the space of functions for which <math>x(t)\,\!</math> and <math>y(t)\,\!</math> are members and |
||
<math>x(t)= \sum _n a_n \phi_n (t)\,\!</math> and |
|||
<math>y(t)= \sum _m b_m \phi_m (t)\,\!</math>, then show |
|||
#<math> \left \langle x | y \right \rangle = \sum_n a_n b_n^*</math> |
#<math> \left \langle x | y \right \rangle = \sum_n a_n b_n^*</math> |
||
#<math> \left \langle x | x \right \rangle = \sum_n \left | a_n \right |^2</math> |
#<math> \left \langle x | x \right \rangle = \sum_n \left | a_n \right |^2</math> |
||
==Notes== |
==Notes== |
||
<math> \left \langle x | y \right \rangle = \int_{-\infty}^{\infty}x(t)y(t)^*\,dt</math> |
<math> \left \langle x | y \right \rangle = \int_{-\infty}^{\infty}x(t)y(t)^*\,dt</math> |
||
*This notation is called the Bra <math> \langle\phi| </math> Ket <math>|\psi\rangle</math>, or Dirac notation. It denotes the inner product. |
*This notation is called the Bra <math> \langle\phi| </math> Ket <math>|\psi\rangle</math>, or Dirac notation. It denotes the inner product. |
||
==Solution== |
|||
{| border="0" cellpadding="0" cellspacing="0" |
|||
|- |
|||
|<math>\int_{-\infty}^{\infty} \sum _n a_n \phi_n (t) \sum _m b_m \phi_m (t)^* \,dt</math> |
|||
|<math>=\sum_n \sum _m a_n b_m^* \int_{-\infty}^{\infty} \phi_n (t) \phi_m (t)^* \,dt</math> |
|||
|- |
|||
| |
|||
|<math>=\sum_n \sum _m a_n b_m^* \left \langle \phi_n (t) | \phi_m (t) \right \rangle</math> |
|||
|- |
|||
| |
|||
|<math>=\sum_n \sum _m a_n b_m^* \delta_{nm}</math> |
|||
|- |
|||
| |
|||
|<math>=\sum_n a_n b_n^*</math> |
|||
|} |
|||
{| border="0" cellpadding="0" cellspacing="0" |
|||
|- |
|||
|<math>\int_{-\infty}^{\infty} \sum _n a_n \phi_n (t) \sum _m a_m \phi_m (t)^* \,dt</math> |
|||
|<math>=\sum_n \sum _m a_n a_m^* \int_{-\infty}^{\infty} \phi_n (t) \phi_m (t)^* \,dt</math> |
|||
|- |
|||
| |
|||
|<math>=\sum_n \sum _m a_n a_m^* \left \langle \phi_n (t) | \phi_m (t) \right \rangle</math> |
|||
|- |
|||
| |
|||
|<math>=\sum_n \sum _m a_n a_m^* \delta_{nm}</math> |
|||
|- |
|||
| |
|||
|<math>=\sum_n \left | a_n \right |^2</math> |
|||
|} |
Latest revision as of 17:27, 12 November 2008
Problem
If and span the space of functions for which and are members and and , then show
Notes
- This notation is called the Bra Ket , or Dirac notation. It denotes the inner product.