HW 03: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
|||
(6 intermediate revisions by the same user not shown) | |||
Line 2: | Line 2: | ||
If <math> \left \langle \phi_n | \phi_m \right \rangle = \delta_{mn}</math> and <math> \phi_n \,\!</math> span the space of functions for which <math>x(t)\,\!</math> and <math>y(t)\,\!</math> are members and | If <math> \left \langle \phi_n | \phi_m \right \rangle = \delta_{mn}</math> and <math> \phi_n \,\!</math> span the space of functions for which <math>x(t)\,\!</math> and <math>y(t)\,\!</math> are members and | ||
<math>x(t)= \sum _n a_n \phi_n (t)\,\!</math> and | <math>x(t)= \sum _n a_n \phi_n (t)\,\!</math> and | ||
<math>y(t)= \sum | <math>y(t)= \sum _m b_m \phi_m (t)\,\!</math>, then show | ||
#<math> \left \langle x | y \right \rangle = \sum_n a_n b_n^*</math> | #<math> \left \langle x | y \right \rangle = \sum_n a_n b_n^*</math> | ||
Line 12: | Line 12: | ||
==Solution== | ==Solution== | ||
{| border="0" cellpadding="0" cellspacing="0" | |||
|- | |||
|<math>\int_{-\infty}^{\infty} \sum _n a_n \phi_n (t) \sum _m b_m \phi_m (t)^* \,dt</math> | |||
|<math>=\sum_n \sum _m a_n b_m^* \int_{-\infty}^{\infty} \phi_n (t) \phi_m (t)^* \,dt</math> | |||
|- | |||
| | |||
|<math>=\sum_n \sum _m a_n b_m^* \left \langle \phi_n (t) | \phi_m (t) \right \rangle</math> | |||
|- | |||
| | |||
|<math>=\sum_n \sum _m a_n b_m^* \delta_{nm}</math> | |||
|- | |||
| | |||
|<math>=\sum_n a_n b_n^*</math> | |||
|} | |||
{| border="0" cellpadding="0" cellspacing="0" | |||
|- | |||
|<math>\int_{-\infty}^{\infty} \sum _n a_n \phi_n (t) \sum _m a_m \phi_m (t)^* \,dt</math> | |||
|<math>=\sum_n \sum _m a_n a_m^* \int_{-\infty}^{\infty} \phi_n (t) \phi_m (t)^* \,dt</math> | |||
|- | |||
| | |||
|<math>=\sum_n \sum _m a_n a_m^* \left \langle \phi_n (t) | \phi_m (t) \right \rangle</math> | |||
|- | |||
| | |||
|<math>=\sum_n \sum _m a_n a_m^* \delta_{nm}</math> | |||
|- | |||
| | |||
|<math>=\sum_n \left | a_n \right |^2</math> | |||
|} |
Latest revision as of 18:27, 12 November 2008
Problem
If and span the space of functions for which and are members and and , then show
Notes
- This notation is called the Bra Ket , or Dirac notation. It denotes the inner product.