HW 03: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
 
(3 intermediate revisions by the same user not shown)
Line 14: Line 14:
{| border="0" cellpadding="0" cellspacing="0"
{| border="0" cellpadding="0" cellspacing="0"
|-
|-
|<math>\int_{-\infty}^{\infty} \sum _n a_n \phi_n (t) \sum _m b_n \phi_n (t)^* \,dt</math>
|<math>\int_{-\infty}^{\infty} \sum _n a_n \phi_n (t) \sum _m b_m \phi_m (t)^* \,dt</math>
|<math>=\sum_n \sum _m a_n b_m^* \int_{-\infty}^{\infty} \phi_n (t) \phi_m (t)^* \,dt</math>
|<math>=\sum_n \sum _m a_n b_m^* \int_{-\infty}^{\infty} \phi_n (t) \phi_m (t)^* \,dt</math>
|-
|-
|
|
|<math>=\sum_n \sum _m a_n b_m^* \left \langle \phi_n (t) | \phi_m (t)^* \right \rangle</math>
|<math>=\sum_n \sum _m a_n b_m^* \left \langle \phi_n (t) | \phi_m (t) \right \rangle</math>
|-
|-
|
|
|<math>=\sum_n \sum _m a_n b_m^* \delta_{nm^*}</math>
|<math>=\sum_n \sum _m a_n b_m^* \delta_{nm}</math>
|-
|-
|
|
|<math>=\sum_n a_n b_n^*</math>
|<math>=\sum_n a_n b_n^*</math>
|}
|}



{| border="0" cellpadding="0" cellspacing="0"
{| border="0" cellpadding="0" cellspacing="0"
|-
|-
|<math>\int_{-\infty}^{\infty} \sum _n a_n \phi_n (t) \sum _m b_n \phi_n (t)^* \,dt</math>
|<math>\int_{-\infty}^{\infty} \sum _n a_n \phi_n (t) \sum _m a_m \phi_m (t)^* \,dt</math>
|<math>=\sum_n \sum _m a_n b_m^* \int_{-\infty}^{\infty} \phi_n (t) \phi_m (t)^* \,dt</math>
|<math>=\sum_n \sum _m a_n a_m^* \int_{-\infty}^{\infty} \phi_n (t) \phi_m (t)^* \,dt</math>
|-
|-
|
|
|<math>=\sum_n \sum _m a_n b_m^* \left \langle \phi_n (t) | \phi_m (t)^* \right \rangle</math>
|<math>=\sum_n \sum _m a_n a_m^* \left \langle \phi_n (t) | \phi_m (t) \right \rangle</math>
|-
|-
|
|
|<math>=\sum_n \sum _m a_n b_m^* \delta_{nm^*}</math>
|<math>=\sum_n \sum _m a_n a_m^* \delta_{nm}</math>
|-
|-
|
|
|<math>=\sum_n a_n b_n^*</math>
|<math>=\sum_n \left | a_n \right |^2</math>
|}
|}

Latest revision as of 17:27, 12 November 2008

Problem

If and span the space of functions for which and are members and and , then show

Notes

  • This notation is called the Bra Ket , or Dirac notation. It denotes the inner product.

Solution