ASN4 fixing: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
No edit summary
 
(9 intermediate revisions by the same user not shown)
Line 6: Line 6:


Note that
Note that
<math> (|s(t)|)^2 = \frac {s(t)^.s^*(t)}{2} </math>
<math> (|s(t)|)^2 = s(t)^.s^*(t) \!</math>


and also that
and also that


<math> s(t)= F ^{-1}[S(f)]=\int_{- \infty}^{\infty}S(f)e^{j 2 \pi f t} df </math>
<math> s(t)= F ^{-1}[S(f)]=\int_{- \infty}^{\infty}S(f)e^{j 2 \pi f t} df \!</math>


Therefore
Therefore


<math> (|s(t)|)^2 = \frac {1}{2}\int_{- \infty}^{\infty}\int_{- \infty}^{\infty}S(f)e^{j 2 \pi f t} S(f)e^{-j 2 \pi f t} df df</math>
<math> (|s(t)|)^2 = \int_{- \infty}^{\infty}\int_{- \infty}^{\infty}S(f)e^{j 2 \pi f t} S(f)e^{-j 2 \pi f' t} df df^'\!</math>



and

<math> \int_{- \infty}^{\infty} (|s(t)|)^2 dt = \int_{- \infty}^{\infty} \int_{- \infty}^{\infty}\int_{- \infty}^{\infty}S(f)e^{j 2 \pi f t} S(f)e^{-j 2 \pi f' t} df df^'dt</math>






<math> (\int_{- \infty}^{\infty})^5 s(t)e^{-j 2 \pi f t}e^{j 2 \pi f t} s(t)e^{-j 2 \pi f t}e^{-j 2 \pi f' t} df df^'dt\! </math>


<math> |s(t)|= F ^{-1}[S(f)]=|\int_{- \infty}^{\infty}S(f)e^{j 2 \pi f t} df | </math>


Note that <math> |e^{j 2 \pi f t}|= \sqrt{cos^2(2 \pi f t) + sin^2(2 \pi f t)}=1 </math>
Note that <math> |e^{j 2 \pi f t}|= \sqrt{cos^2(2 \pi f t) + sin^2(2 \pi f t)}=1 </math>



The above equation of <math>|s(t)|</math> simplifies to then <math>|s(t)|= \int_{- \infty}^{\infty}S(f) df= |S(f)|</math>
The above equation of <math>|s(t)|</math> simplifies to then <math>|s(t)|= \int_{- \infty}^{\infty}S(f) df= |S(f)|</math>

Latest revision as of 13:30, 16 December 2009

back to my home page

Parseval's Theorem

Parseval's Theorem says that in time transforms to in frequency

Note that

and also that

Therefore


and





Note that


The above equation of simplifies to then

Therefore,squaring the function and intergrating it in the time domain is to do the same in the frequency domain