ASN4 fixing: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
Jodi.Hodge (talk | contribs)
No edit summary
Jodi.Hodge (talk | contribs)
 
(2 intermediate revisions by the same user not shown)
Line 16: Line 16:
<math> (|s(t)|)^2 = \int_{- \infty}^{\infty}\int_{- \infty}^{\infty}S(f)e^{j 2 \pi f t} S(f)e^{-j 2 \pi f' t} df df^'\!</math>
<math> (|s(t)|)^2 = \int_{- \infty}^{\infty}\int_{- \infty}^{\infty}S(f)e^{j 2 \pi f t} S(f)e^{-j 2 \pi f' t} df df^'\!</math>


<math> s(t)e^{-j 2 \pi f t}e^{j 2 \pi f t} s(t)e^{-j 2 \pi f t}e^{-j 2 \pi f' t} df df^'\! </math>
 


and
and
Line 22: Line 22:
<math> \int_{- \infty}^{\infty} (|s(t)|)^2 dt = \int_{- \infty}^{\infty} \int_{- \infty}^{\infty}\int_{- \infty}^{\infty}S(f)e^{j 2 \pi f t} S(f)e^{-j 2 \pi f' t} df df^'dt</math>
<math> \int_{- \infty}^{\infty} (|s(t)|)^2 dt = \int_{- \infty}^{\infty} \int_{- \infty}^{\infty}\int_{- \infty}^{\infty}S(f)e^{j 2 \pi f t} S(f)e^{-j 2 \pi f' t} df df^'dt</math>


Note that  
 
 
 
 
 
<math> (\int_{- \infty}^{\infty})^5 s(t)e^{-j 2 \pi f t}e^{j 2 \pi f t} s(t)e^{-j 2 \pi f t}e^{-j 2 \pi f' t} df df^'dt\! </math>
 
 
<math> |s(t)|= F ^{-1}[S(f)]=|\int_{- \infty}^{\infty}S(f)e^{j 2 \pi f t} df | </math>
 
Note that <math> |e^{j 2 \pi f t}|= \sqrt{cos^2(2 \pi f t) + sin^2(2 \pi f t)}=1 </math>
 


The above equation of <math>|s(t)|</math> simplifies to then <math>|s(t)|= \int_{- \infty}^{\infty}S(f) df= |S(f)|</math>
The above equation of <math>|s(t)|</math> simplifies to then <math>|s(t)|= \int_{- \infty}^{\infty}S(f) df= |S(f)|</math>


Therefore,squaring the function and intergrating it in the time domain <math>\int_{- \infty}^{\infty} (|s(t)|)^2 dt</math> is to do the same in the frequency domain <math>\int_{- \infty}^{\infty} (|S(f)|)^2 df</math>
Therefore,squaring the function and intergrating it in the time domain <math>\int_{- \infty}^{\infty} (|s(t)|)^2 dt</math> is to do the same in the frequency domain <math>\int_{- \infty}^{\infty} (|S(f)|)^2 df</math>

Latest revision as of 14:30, 16 December 2009

back to my home page

Parseval's Theorem

Parseval's Theorem says that (|s(t)|)2dt in time transforms to (|S(f)|)2df in frequency

Note that (|s(t)|)2=s(t).s*(t)

and also that

s(t)=F1[S(f)]=S(f)ej2πftdf

Therefore

(|s(t)|)2=S(f)ej2πftS(f)ej2πftdfdf'


and

(|s(t)|)2dt=S(f)ej2πftS(f)ej2πftdfdf'dt




()5s(t)ej2πftej2πfts(t)ej2πftej2πftdfdf'dt


|s(t)|=F1[S(f)]=|S(f)ej2πftdf|

Note that |ej2πft|=cos2(2πft)+sin2(2πft)=1


The above equation of |s(t)| simplifies to then |s(t)|=S(f)df=|S(f)|

Therefore,squaring the function and intergrating it in the time domain (|s(t)|)2dt is to do the same in the frequency domain (|S(f)|)2df