ASN4 fixing: Difference between revisions
Jump to navigation
Jump to search
Jodi.Hodge (talk | contribs) No edit summary |
Jodi.Hodge (talk | contribs) |
||
(2 intermediate revisions by the same user not shown) | |||
Line 16: | Line 16: | ||
<math> (|s(t)|)^2 = \int_{- \infty}^{\infty}\int_{- \infty}^{\infty}S(f)e^{j 2 \pi f t} S(f)e^{-j 2 \pi f' t} df df^'\!</math> |
<math> (|s(t)|)^2 = \int_{- \infty}^{\infty}\int_{- \infty}^{\infty}S(f)e^{j 2 \pi f t} S(f)e^{-j 2 \pi f' t} df df^'\!</math> |
||
⚫ | |||
and |
and |
||
Line 22: | Line 22: | ||
<math> \int_{- \infty}^{\infty} (|s(t)|)^2 dt = \int_{- \infty}^{\infty} \int_{- \infty}^{\infty}\int_{- \infty}^{\infty}S(f)e^{j 2 \pi f t} S(f)e^{-j 2 \pi f' t} df df^'dt</math> |
<math> \int_{- \infty}^{\infty} (|s(t)|)^2 dt = \int_{- \infty}^{\infty} \int_{- \infty}^{\infty}\int_{- \infty}^{\infty}S(f)e^{j 2 \pi f t} S(f)e^{-j 2 \pi f' t} df df^'dt</math> |
||
Note that |
|||
⚫ | |||
<math> |s(t)|= F ^{-1}[S(f)]=|\int_{- \infty}^{\infty}S(f)e^{j 2 \pi f t} df | </math> |
|||
Note that <math> |e^{j 2 \pi f t}|= \sqrt{cos^2(2 \pi f t) + sin^2(2 \pi f t)}=1 </math> |
|||
The above equation of <math>|s(t)|</math> simplifies to then <math>|s(t)|= \int_{- \infty}^{\infty}S(f) df= |S(f)|</math> |
The above equation of <math>|s(t)|</math> simplifies to then <math>|s(t)|= \int_{- \infty}^{\infty}S(f) df= |S(f)|</math> |
Latest revision as of 13:30, 16 December 2009
Parseval's Theorem
Parseval's Theorem says that in time transforms to in frequency
Note that
and also that
Therefore
and
Note that
The above equation of simplifies to then
Therefore,squaring the function and intergrating it in the time domain is to do the same in the frequency domain