ASN3 - Class Notes October 5: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 21: Line 21:
<math> X(F)= \mathcal{F}[x(t)] \int_{-\frac{T}{2}}^{\frac{T}{2}} x(t')e^{\frac{ -j2 \pi nt'}{T}} dt' \!</math>
<math> X(F)= \mathcal{F}[x(t)] \int_{-\frac{T}{2}}^{\frac{T}{2}} x(t')e^{\frac{ -j2 \pi nt'}{T}} dt' \!</math>


Using the Fourier Transform property along with <math> \lim_{T\to \infty} n/t </math> is <math>f </math>
Using the Fourier Transform property along with <math> \lim_{T\to \infty} n/t = f </math> then <math >x(t)</math> is now

<math> x(t)= \int_{-\infty} ^ {\infty} [\int_{-\infty} ^ {\infty} x(t')e^{ -j2 \pi ft'} dt'] e^{ j2 \pi ft}df \!</math>
<math> x(t)= \int_{-\infty} ^ {\infty} [\int_{-\infty} ^ {\infty} x(t')e^{ -j2 \pi ft'} dt'] e^{ j2 \pi ft}df \!</math>

Reordering order of integration


<math> x(t)= \int_{-\infty} ^ {\infty} x(t')[\int_{-\infty} ^ {\infty} e^{ j2 \pi f(t'-t)} df ]dt' \!</math>
<math> x(t)= \int_{-\infty} ^ {\infty} x(t')[\int_{-\infty} ^ {\infty} e^{ j2 \pi f(t'-t)} df ]dt' \!</math>

Revision as of 21:25, 17 December 2009

Back to my Home Page

When T is very large (approaching infinity) the quanity on the left transforms to be approximately the quanity on the right.



Using the relations above, can we make an unperiodic signal such as the one given below and make it periodic by taking the limit?

note that

Using the Fourier Transform property along with then is now

Reordering order of integration

note that the defination of the delta function is

                     THE GAME
            LTI (Linear Time Invariant System) 
Input     LTI                             Output                                  Reason

Superposition

Superposition