ASN6 a,b- fixing: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 9: Line 9:


'''Answer'''
'''Answer'''
a)<math>S(0)= S(f)|_{f=0} = \int_{-\infty}^{\infty} s(t)e^{- j 2 \pi f t} dt = \int_{-\infty}^{\infty} s(t) dt</math>


a)
Remember dummy variable <math> \lambda= t-t_0 \! </math> Then <math> s(\lambda)= s(t-t_0) \! </math> and <math> \int_{- \infty}^{t} s(\lambda) \,d\lambda = \int_{- \infty}^{t}\mathcal{F}\left[ G (f)- G(f_0) \,d\lambda \right] \! </math>

Remember dummy variable <math> \lambda= t-t_0 \! </math> Then <math> s(\lambda)= s(t-t_0)= \mathcal{F}\left[ S (f)- S(f_0) \right] \! </math> and <math> \int_{- \infty}^{t} s(\lambda) \,d\lambda = \int_{- \infty}^{t}\mathcal{F}\left[ S (f)- S(f_0) \right] \,d\lambda \! </math>

<math>f_0=0 \!</math> where <math>S(0)= S(f)|_{f=0} = \int_{-\infty}^{\infty} s(t)e^{- j 2 \pi f t} dt = \int_{-\infty}^{\infty} s(t) dt \! </math>

Revision as of 18:54, 18 December 2009

Back to my home page


Problem Statement

6(a) Show . HINT:

6(b) If can you find in terms of ?

Answer

a)

Remember dummy variable Then and

where