ASN6 a,b- fixing: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 21: Line 21:
<math> \int_{- \infty}^{t} s(\lambda) \,d\lambda = \int_{- \infty}^{t}\mathcal{F}\left[ S (f) \right] \,dt \! </math>
<math> \int_{- \infty}^{t} s(\lambda) \,d\lambda = \int_{- \infty}^{t}\mathcal{F}\left[ S (f) \right] \,dt \! </math>


<math> \mathcal{F}\left[ S (f)- S(f_0) \right] = \int_{- \infty}^{t} e^{-j2 \pi f t} \,dt \int_{- \infty}^{\infty} S(f)\,df = \frac{ e^{-j2 \pi f t}} {-j2 \pi f }\int_{- \infty}^{\infty} S(f) \,df =\infty}^{\infty} S(f)\frac{ e^{-j2 \pi f t}} {-j2 \pi f }\,df </math>
<math> \mathcal{F}^{-1}\left[ S (f)- S(f_0) \right] = \int_{- \infty}^{t} e^{j2 \pi f t} \,dt \int_{- \infty}^{\infty} S(f)\,df = \frac{ e^{j2 \pi f t}} {j2 \pi f }\int_{- \infty}^{\infty} S(f) \,df =\! </math>

<math>\int_{\infty}^{\infty} S(f)\frac{ e^{j2 \pi f t}} {j2 \pi f }\,df = \mathcal{F }^{-1}\left[ \frac{S(f)}{j2 \pi f} \right] \! </math>

Revision as of 19:51, 18 December 2009

Back to my home page


Problem Statement

6(a) Show . Hint:

6(b) If can you find in terms of ?

Answer

a)

Remember dummy variable Then and

where