ASN6 a,b- fixing: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
Jodi.Hodge (talk | contribs)
No edit summary
Jodi.Hodge (talk | contribs)
No edit summary
 
(9 intermediate revisions by the same user not shown)
Line 4: Line 4:
'''Problem Statement'''
'''Problem Statement'''


6(a) Show <math> \mathcal{F}\left[ \int_{- \infty}^{t} s(\lambda ) \,d\lambda \right] = \frac{S(f)}{j2 \pi f} \mbox{ if } S(0) = 0 </math>. HINT: <math> S(0) = S(f) \vert _{_{f=0}} = \int_{- \infty}^{\infty} s(t)e^{-j2 \pi (f \rightarrow 0)t} \,dt = \int_{- \infty}^{\infty} s(t) \,dt </math>
6(a) Show <math> \mathcal{F}\left[ \int_{- \infty}^{t} s(\lambda ) \,d\lambda \right] = \frac{S(f)}{j2 \pi f} \mbox{ if } S(0) = 0 </math>. Hint: <math> S(0) = S(f) \vert _{_{f=0}} = \int_{- \infty}^{\infty} s(t)e^{-j2 \pi (f \rightarrow 0)t} \,dt = \int_{- \infty}^{\infty} s(t) \,dt </math>


6(b) If <math> S(0) \neq 0 </math> can you find <math> \mathcal{F}\left[ \int_{- \infty}^{t} s(\lambda ) \,d\lambda \right] </math> in terms of <math> \displaystyle S(0) </math>?
6(b) If <math> S(0) \neq 0 </math> can you find <math> \mathcal{F}\left[ \int_{- \infty}^{t} s(\lambda ) \,d\lambda \right] </math> in terms of <math> \displaystyle S(0) </math>?


'''Answer'''
'''Answer'''
a)<math>S(0)= S(f)|_{f=0} = \int_{-\infty}^{\infty} s(t)e^{- j 2 \pi f t} dt = \int_{-\infty}^{\infty} s(t) dt</math>


Remember dummy variable <math> \lambda= t-t_0 </math> Then <math> s(\lambda)= s(t-t_0)</math>
a)
 
Remember dummy variable <math> \lambda= t-t_0 \! </math> Then <math> s(\lambda)= s(t-t_0)= \mathcal{F}\left[ S (f)- S(f_0) \right] \! </math> and <math> \int_{- \infty}^{t} s(\lambda) \,d\lambda = \int_{- \infty}^{t}\mathcal{F}\left[ S (f)- S(f_0) \right] \,d\lambda \! </math>
 
<math>f_0=0 \!</math> where  <math>S(0)= S(f)|_{f=0} = \int_{-\infty}^{\infty} s(t)e^{- j 2 \pi f t} dt = \int_{-\infty}^{\infty} s(t) dt \! </math>
 
<math>\mbox{ if } S(0) = 0\,\,\, \int_{-\infty}^{\infty} s(t) dt =0 \!</math>
 
 
<math> \int_{- \infty}^{t} s(\lambda) \,d\lambda = \int_{- \infty}^{t}\mathcal{F}\left[ S (f) \right] \,dt \! </math>
 
<math>  \mathcal{F}^{-1}\left[ S (f)- S(f_0) \right]  = \int_{- \infty}^{t} e^{j2 \pi f t} \,dt \int_{- \infty}^{\infty}  S(f)\,df = \frac{ e^{j2 \pi f t}} {j2 \pi f }\int_{- \infty}^{\infty} S(f) \,df =\! </math>
 
<math>\int_{- \infty}^{t} s(\lambda ) \,d\lambda = \int_{\infty}^{\infty} S(f)\frac{ e^{j2 \pi f t}} {j2 \pi f }\,df = \mathcal{F }^{-1}\left[  \frac{S(f)}{j2 \pi f} \right] \! </math>
 
Therefore <math> \mathcal{F}\left[ \int_{- \infty}^{t} s(\lambda ) \,d\lambda \right] = \frac{S(f)}{j2 \pi f} \!</math>

Latest revision as of 20:55, 18 December 2009

Back to my home page


Problem Statement

6(a) Show [ts(λ)dλ]=S(f)j2πf if S(0)=0. Hint: S(0)=S(f)|f=0=s(t)ej2π(f0)tdt=s(t)dt

6(b) If S(0)0 can you find [ts(λ)dλ] in terms of S(0)?

Answer

a)

Remember dummy variable λ=tt0 Then s(λ)=s(tt0)=[S(f)S(f0)] and ts(λ)dλ=t[S(f)S(f0)]dλ

f0=0 where S(0)=S(f)|f=0=s(t)ej2πftdt=s(t)dt

 if S(0)=0s(t)dt=0


ts(λ)dλ=t[S(f)]dt

1[S(f)S(f0)]=tej2πftdtS(f)df=ej2πftj2πfS(f)df=

ts(λ)dλ=S(f)ej2πftj2πfdf=1[S(f)j2πf]

Therefore [ts(λ)dλ]=S(f)j2πf