ASN6 a,b- fixing: Difference between revisions
Jump to navigation
Jump to search
Jodi.Hodge (talk | contribs) No edit summary |
Jodi.Hodge (talk | contribs) No edit summary |
||
(9 intermediate revisions by the same user not shown) | |||
Line 4: | Line 4: | ||
'''Problem Statement''' |
'''Problem Statement''' |
||
6(a) Show <math> \mathcal{F}\left[ \int_{- \infty}^{t} s(\lambda ) \,d\lambda \right] = \frac{S(f)}{j2 \pi f} \mbox{ if } S(0) = 0 </math>. |
6(a) Show <math> \mathcal{F}\left[ \int_{- \infty}^{t} s(\lambda ) \,d\lambda \right] = \frac{S(f)}{j2 \pi f} \mbox{ if } S(0) = 0 </math>. Hint: <math> S(0) = S(f) \vert _{_{f=0}} = \int_{- \infty}^{\infty} s(t)e^{-j2 \pi (f \rightarrow 0)t} \,dt = \int_{- \infty}^{\infty} s(t) \,dt </math> |
||
6(b) If <math> S(0) \neq 0 </math> can you find <math> \mathcal{F}\left[ \int_{- \infty}^{t} s(\lambda ) \,d\lambda \right] </math> in terms of <math> \displaystyle S(0) </math>? |
6(b) If <math> S(0) \neq 0 </math> can you find <math> \mathcal{F}\left[ \int_{- \infty}^{t} s(\lambda ) \,d\lambda \right] </math> in terms of <math> \displaystyle S(0) </math>? |
||
'''Answer''' |
'''Answer''' |
||
⚫ | |||
a) |
|||
Remember dummy variable <math> \lambda= t-t_0 </math> Then <math> s(\lambda)= s(t-t_0)</math> |
|||
Remember dummy variable <math> \lambda= t-t_0 \! </math> Then <math> s(\lambda)= s(t-t_0)= \mathcal{F}\left[ S (f)- S(f_0) \right] \! </math> and <math> \int_{- \infty}^{t} s(\lambda) \,d\lambda = \int_{- \infty}^{t}\mathcal{F}\left[ S (f)- S(f_0) \right] \,d\lambda \! </math> |
|||
⚫ | |||
<math>\mbox{ if } S(0) = 0\,\,\, \int_{-\infty}^{\infty} s(t) dt =0 \!</math> |
|||
<math> \int_{- \infty}^{t} s(\lambda) \,d\lambda = \int_{- \infty}^{t}\mathcal{F}\left[ S (f) \right] \,dt \! </math> |
|||
<math> \mathcal{F}^{-1}\left[ S (f)- S(f_0) \right] = \int_{- \infty}^{t} e^{j2 \pi f t} \,dt \int_{- \infty}^{\infty} S(f)\,df = \frac{ e^{j2 \pi f t}} {j2 \pi f }\int_{- \infty}^{\infty} S(f) \,df =\! </math> |
|||
<math>\int_{- \infty}^{t} s(\lambda ) \,d\lambda = \int_{\infty}^{\infty} S(f)\frac{ e^{j2 \pi f t}} {j2 \pi f }\,df = \mathcal{F }^{-1}\left[ \frac{S(f)}{j2 \pi f} \right] \! </math> |
|||
Therefore <math> \mathcal{F}\left[ \int_{- \infty}^{t} s(\lambda ) \,d\lambda \right] = \frac{S(f)}{j2 \pi f} \!</math> |
Latest revision as of 19:55, 18 December 2009
Problem Statement
6(a) Show . Hint:
6(b) If can you find in terms of ?
Answer
a)
Remember dummy variable Then and
where
Therefore